mirror of
https://github.com/NixOS/nixpkgs.git
synced 2025-06-13 21:25:30 +03:00
142 lines
4.5 KiB
Python
142 lines
4.5 KiB
Python
![]() |
import json
|
||
|
import os
|
||
|
from scipy.stats import ttest_rel
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from pathlib import Path
|
||
|
|
||
|
# Define metrics of interest (can be expanded as needed)
|
||
|
METRIC_PREFIXES = ("nr", "gc")
|
||
|
|
||
|
def flatten_data(json_data: dict) -> dict:
|
||
|
"""
|
||
|
Extracts and flattens metrics from JSON data.
|
||
|
This is needed because the JSON data can be nested.
|
||
|
For example, the JSON data entry might look like this:
|
||
|
|
||
|
"gc":{"cycles":13,"heapSize":5404549120,"totalBytes":9545876464}
|
||
|
|
||
|
Flattened:
|
||
|
|
||
|
"gc.cycles": 13
|
||
|
"gc.heapSize": 5404549120
|
||
|
...
|
||
|
|
||
|
Args:
|
||
|
json_data (dict): JSON data containing metrics.
|
||
|
Returns:
|
||
|
dict: Flattened metrics with keys as metric names.
|
||
|
"""
|
||
|
flat_metrics = {}
|
||
|
for k, v in json_data.items():
|
||
|
if isinstance(v, (int, float)):
|
||
|
flat_metrics[k] = v
|
||
|
elif isinstance(v, dict):
|
||
|
for sub_k, sub_v in v.items():
|
||
|
flat_metrics[f"{k}.{sub_k}"] = sub_v
|
||
|
return flat_metrics
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def load_all_metrics(directory: Path) -> dict:
|
||
|
"""
|
||
|
Loads all stats JSON files in the specified directory and extracts metrics.
|
||
|
|
||
|
Args:
|
||
|
directory (Path): Directory containing JSON files.
|
||
|
Returns:
|
||
|
dict: Dictionary with filenames as keys and extracted metrics as values.
|
||
|
"""
|
||
|
metrics = {}
|
||
|
for system_dir in directory.iterdir():
|
||
|
assert system_dir.is_dir()
|
||
|
|
||
|
for chunk_output in system_dir.iterdir():
|
||
|
with chunk_output.open() as f:
|
||
|
data = json.load(f)
|
||
|
metrics[f"{system_dir.name}/${chunk_output.name}"] = flatten_data(data)
|
||
|
|
||
|
return metrics
|
||
|
|
||
|
def dataframe_to_markdown(df: pd.DataFrame) -> str:
|
||
|
markdown_lines = []
|
||
|
|
||
|
# Header (get column names and format them)
|
||
|
header = '\n| ' + ' | '.join(df.columns) + ' |'
|
||
|
markdown_lines.append(header)
|
||
|
markdown_lines.append("| - " * (len(df.columns)) + "|") # Separator line
|
||
|
|
||
|
# Iterate over rows to build Markdown rows
|
||
|
for _, row in df.iterrows():
|
||
|
# TODO: define threshold for highlighting
|
||
|
highlight = False
|
||
|
|
||
|
fmt = lambda x: f"**{x}**" if highlight else f"{x}"
|
||
|
|
||
|
# Check for no change and NaN in p_value/t_stat
|
||
|
row_values = []
|
||
|
for val in row:
|
||
|
if isinstance(val, float) and np.isnan(val): # For NaN values in p-value or t-stat
|
||
|
row_values.append("-") # Custom symbol for NaN
|
||
|
elif isinstance(val, float) and val == 0: # For no change (mean_diff == 0)
|
||
|
row_values.append("-") # Custom symbol for no change
|
||
|
else:
|
||
|
row_values.append(fmt(f"{val:.4f}" if isinstance(val, float) else str(val)))
|
||
|
|
||
|
markdown_lines.append('| ' + ' | '.join(row_values) + ' |')
|
||
|
|
||
|
return '\n'.join(markdown_lines)
|
||
|
|
||
|
|
||
|
def perform_pairwise_tests(before_metrics: dict, after_metrics: dict) -> pd.DataFrame:
|
||
|
common_files = sorted(set(before_metrics) & set(after_metrics))
|
||
|
all_keys = sorted({ metric_keys for file_metrics in before_metrics.values() for metric_keys in file_metrics.keys() })
|
||
|
|
||
|
results = []
|
||
|
|
||
|
for key in all_keys:
|
||
|
before_vals, after_vals = [], []
|
||
|
|
||
|
for fname in common_files:
|
||
|
if key in before_metrics[fname] and key in after_metrics[fname]:
|
||
|
before_vals.append(before_metrics[fname][key])
|
||
|
after_vals.append(after_metrics[fname][key])
|
||
|
|
||
|
if len(before_vals) >= 2:
|
||
|
before_arr = np.array(before_vals)
|
||
|
after_arr = np.array(after_vals)
|
||
|
|
||
|
diff = after_arr - before_arr
|
||
|
pct_change = 100 * diff / before_arr
|
||
|
t_stat, p_val = ttest_rel(after_arr, before_arr)
|
||
|
|
||
|
results.append({
|
||
|
"metric": key,
|
||
|
"mean_before": np.mean(before_arr),
|
||
|
"mean_after": np.mean(after_arr),
|
||
|
"mean_diff": np.mean(diff),
|
||
|
"mean_%_change": np.mean(pct_change),
|
||
|
"p_value": p_val,
|
||
|
"t_stat": t_stat
|
||
|
})
|
||
|
|
||
|
df = pd.DataFrame(results).sort_values("p_value")
|
||
|
return df
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
before_dir = os.environ.get("BEFORE_DIR")
|
||
|
after_dir = os.environ.get("AFTER_DIR")
|
||
|
|
||
|
if not before_dir or not after_dir:
|
||
|
print("Error: Environment variables 'BEFORE_DIR' and 'AFTER_DIR' must be set.")
|
||
|
exit(1)
|
||
|
|
||
|
before_metrics = load_all_metrics(Path(before_dir) / "stats")
|
||
|
after_metrics = load_all_metrics(Path(after_dir) / "stats")
|
||
|
|
||
|
df1 = perform_pairwise_tests(before_metrics, after_metrics)
|
||
|
markdown_table = dataframe_to_markdown(df1)
|
||
|
print(markdown_table)
|