mirror of
https://github.com/NixOS/nixpkgs.git
synced 2025-06-10 19:55:41 +03:00
ci/compare: nix stats comparison
Displays stats table in the step-summary if there are no added/removed packages
This commit is contained in:
parent
0d6b61cf5f
commit
0d584f7c8f
3 changed files with 201 additions and 4 deletions
153
ci/eval/compare/cmp-stats.py
Normal file
153
ci/eval/compare/cmp-stats.py
Normal file
|
@ -0,0 +1,153 @@
|
|||
import json
|
||||
import os
|
||||
from scipy.stats import ttest_rel
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
# Define metrics of interest (can be expanded as needed)
|
||||
METRIC_PREFIXES = ("nr", "gc")
|
||||
|
||||
def flatten_data(json_data: dict) -> dict:
|
||||
"""
|
||||
Extracts and flattens metrics from JSON data.
|
||||
This is needed because the JSON data can be nested.
|
||||
For example, the JSON data entry might look like this:
|
||||
|
||||
"gc":{"cycles":13,"heapSize":5404549120,"totalBytes":9545876464}
|
||||
|
||||
Flattened:
|
||||
|
||||
"gc.cycles": 13
|
||||
"gc.heapSize": 5404549120
|
||||
...
|
||||
|
||||
Args:
|
||||
json_data (dict): JSON data containing metrics.
|
||||
Returns:
|
||||
dict: Flattened metrics with keys as metric names.
|
||||
"""
|
||||
flat_metrics = {}
|
||||
for k, v in json_data.items():
|
||||
if isinstance(v, (int, float)):
|
||||
flat_metrics[k] = v
|
||||
elif isinstance(v, dict):
|
||||
for sub_k, sub_v in v.items():
|
||||
flat_metrics[f"{k}.{sub_k}"] = sub_v
|
||||
return flat_metrics
|
||||
|
||||
|
||||
|
||||
|
||||
def load_all_metrics(directory: Path) -> dict:
|
||||
"""
|
||||
Loads all stats JSON files in the specified directory and extracts metrics.
|
||||
|
||||
Args:
|
||||
directory (Path): Directory containing JSON files.
|
||||
Returns:
|
||||
dict: Dictionary with filenames as keys and extracted metrics as values.
|
||||
"""
|
||||
metrics = {}
|
||||
for system_dir in directory.iterdir():
|
||||
assert system_dir.is_dir()
|
||||
|
||||
for chunk_output in system_dir.iterdir():
|
||||
with chunk_output.open() as f:
|
||||
data = json.load(f)
|
||||
metrics[f"{system_dir.name}/${chunk_output.name}"] = flatten_data(data)
|
||||
|
||||
return metrics
|
||||
|
||||
def dataframe_to_markdown(df: pd.DataFrame) -> str:
|
||||
markdown_lines = []
|
||||
|
||||
# Header (get column names and format them)
|
||||
header = '\n| ' + ' | '.join(df.columns) + ' |'
|
||||
markdown_lines.append(header)
|
||||
markdown_lines.append("| - " * (len(df.columns)) + "|") # Separator line
|
||||
|
||||
# Iterate over rows to build Markdown rows
|
||||
for _, row in df.iterrows():
|
||||
# TODO: define threshold for highlighting
|
||||
highlight = False
|
||||
|
||||
fmt = lambda x: f"**{x}**" if highlight else f"{x}"
|
||||
|
||||
# Check for no change and NaN in p_value/t_stat
|
||||
row_values = []
|
||||
for val in row:
|
||||
if isinstance(val, float) and np.isnan(val): # For NaN values in p-value or t-stat
|
||||
row_values.append("-") # Custom symbol for NaN
|
||||
elif isinstance(val, float) and val == 0: # For no change (mean_diff == 0)
|
||||
row_values.append("-") # Custom symbol for no change
|
||||
else:
|
||||
row_values.append(fmt(f"{val:.4f}" if isinstance(val, float) else str(val)))
|
||||
|
||||
markdown_lines.append('| ' + ' | '.join(row_values) + ' |')
|
||||
|
||||
return '\n'.join(markdown_lines)
|
||||
|
||||
|
||||
def perform_pairwise_tests(before_metrics: dict, after_metrics: dict) -> pd.DataFrame:
|
||||
common_files = sorted(set(before_metrics) & set(after_metrics))
|
||||
all_keys = sorted({ metric_keys for file_metrics in before_metrics.values() for metric_keys in file_metrics.keys() })
|
||||
|
||||
results = []
|
||||
|
||||
for key in all_keys:
|
||||
before_vals, after_vals = [], []
|
||||
|
||||
for fname in common_files:
|
||||
if key in before_metrics[fname] and key in after_metrics[fname]:
|
||||
before_vals.append(before_metrics[fname][key])
|
||||
after_vals.append(after_metrics[fname][key])
|
||||
|
||||
if len(before_vals) >= 2:
|
||||
before_arr = np.array(before_vals)
|
||||
after_arr = np.array(after_vals)
|
||||
|
||||
diff = after_arr - before_arr
|
||||
pct_change = 100 * diff / before_arr
|
||||
t_stat, p_val = ttest_rel(after_arr, before_arr)
|
||||
|
||||
results.append({
|
||||
"metric": key,
|
||||
"mean_before": np.mean(before_arr),
|
||||
"mean_after": np.mean(after_arr),
|
||||
"mean_diff": np.mean(diff),
|
||||
"mean_%_change": np.mean(pct_change),
|
||||
"p_value": p_val,
|
||||
"t_stat": t_stat
|
||||
})
|
||||
|
||||
df = pd.DataFrame(results).sort_values("p_value")
|
||||
return df
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
before_dir = os.environ.get("BEFORE_DIR")
|
||||
after_dir = os.environ.get("AFTER_DIR")
|
||||
|
||||
if not before_dir or not after_dir:
|
||||
print("Error: Environment variables 'BEFORE_DIR' and 'AFTER_DIR' must be set.")
|
||||
exit(1)
|
||||
|
||||
before_stats = Path(before_dir) / "stats"
|
||||
after_stats = Path(after_dir) / "stats"
|
||||
|
||||
# This may happen if the pull request target does not include PR#399720 yet.
|
||||
if not before_stats.exists():
|
||||
print("⚠️ Skipping comparison: stats directory is missing in the target commit.")
|
||||
exit(0)
|
||||
|
||||
# This should never happen, but we're exiting gracefully anyways
|
||||
if not after_stats.exists():
|
||||
print("⚠️ Skipping comparison: stats directory missing in current PR evaluation.")
|
||||
exit(0)
|
||||
|
||||
before_metrics = load_all_metrics(before_stats)
|
||||
after_metrics = load_all_metrics(after_stats)
|
||||
df1 = perform_pairwise_tests(before_metrics, after_metrics)
|
||||
markdown_table = dataframe_to_markdown(df1)
|
||||
print(markdown_table)
|
Loading…
Add table
Add a link
Reference in a new issue