diff --git a/ObjectDetection/obj2Yolov4dataset.py b/ObjectDetection/obj2Yolov4dataset.py new file mode 100644 index 0000000..d9960d3 --- /dev/null +++ b/ObjectDetection/obj2Yolov4dataset.py @@ -0,0 +1,141 @@ +import blenderproc as bproc +""" + obj2Yolov4dataset + Общая задача: обнаружение объекта (Object detection) + Реализуемая функция: создание датасета в формате YoloV4 для заданного объекта (*.obj) + Используется модуль blenderproc + + 24.01.2023 @shalenikol release 0.1 +""" +import numpy as np +import argparse +import random +import os +import shutil +import json + +def convert2relative(height, width, bbox): + """ + YOLO format use relative coordinates for annotation + """ + x, y, w, h = bbox + return x/width, y/height, w/width, h/height + +parser = argparse.ArgumentParser() +parser.add_argument('scene', nargs='?', default="resources/robossembler-asset.obj", help="Path to the object file.") +parser.add_argument('output_dir', nargs='?', default="output", help="Path to where the final files, will be saved") +parser.add_argument('--imgs', default=1, type=int, help="The number of times the objects should be rendered.") +args = parser.parse_args() + +if not os.path.isdir(args.output_dir): + os.mkdir(args.output_dir) + +bproc.init() + +# load the objects into the scene +obj = bproc.loader.load_obj(args.scene)[0] +obj.set_cp("category_id", 1) + +# Randomly perturbate the material of the object +mat = obj.get_materials()[0] +mat.set_principled_shader_value("Specular", random.uniform(0, 1)) +mat.set_principled_shader_value("Roughness", random.uniform(0, 1)) +mat.set_principled_shader_value("Base Color", np.random.uniform([0, 0, 0, 1], [1, 1, 1, 1])) +mat.set_principled_shader_value("Metallic", random.uniform(0, 1)) + +# Create a new light +light = bproc.types.Light() +light.set_type("POINT") +# Sample its location around the object +light.set_location(bproc.sampler.shell( + center=obj.get_location(), + radius_min=1, + radius_max=5, + elevation_min=1, + elevation_max=89 +)) +# Randomly set the color and energy +light.set_color(np.random.uniform([0.5, 0.5, 0.5], [1, 1, 1])) +light.set_energy(random.uniform(100, 1000)) + +bproc.camera.set_resolution(640, 480) + +# Sample five camera poses +poses = 0 +tries = 0 +while tries < 10000 and poses < args.imgs: + # Sample random camera location around the object + location = bproc.sampler.shell( + center=obj.get_location(), + radius_min=1, + radius_max=4, + elevation_min=1, + elevation_max=89 + ) + # Compute rotation based lookat point which is placed randomly around the object + lookat_point = obj.get_location() + np.random.uniform([-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]) + rotation_matrix = bproc.camera.rotation_from_forward_vec(lookat_point - location, inplane_rot=np.random.uniform(-0.7854, 0.7854)) + # Add homog cam pose based on location an rotation + cam2world_matrix = bproc.math.build_transformation_mat(location, rotation_matrix) + + # Only add camera pose if object is still visible + if obj in bproc.camera.visible_objects(cam2world_matrix): + bproc.camera.add_camera_pose(cam2world_matrix) + poses += 1 + tries += 1 + +# Enable transparency so the background becomes transparent +bproc.renderer.set_output_format(enable_transparency=True) +# add segmentation masks (per class and per instance) +bproc.renderer.enable_segmentation_output(map_by=["category_id", "instance", "name"]) + +# Render RGB images +data = bproc.renderer.render() + +# Write data to coco file +res_dir = os.path.join(args.output_dir, 'coco_data') +bproc.writer.write_coco_annotations(res_dir, + instance_segmaps=data["instance_segmaps"], + instance_attribute_maps=data["instance_attribute_maps"], + color_file_format='JPEG', + colors=data["colors"], + append_to_existing_output=True) + +#загрузим аннотацию +with open(os.path.join(res_dir,"coco_annotations.json"), "r") as fh: + y = json.load(fh) + +# список имен объектов +with open(os.path.join(res_dir,"obj.names"), "w") as fh: + for cat in y["categories"]: + fh.write(cat["name"]+"\n") + +# содадим или очистим папку data для датасета +res_data = os.path.join(res_dir, 'data') +if os.path.isdir(res_data): + for f in os.listdir(res_data): + os.remove(os.path.join(res_data, f)) +else: + os.mkdir(res_data) + +# список имен файлов с изображениями +s = [] +with open(os.path.join(res_dir,"images.txt"), "w") as fh: + for i in y["images"]: + filename = i["file_name"] + shutil.copy(os.path.join(res_dir,filename),res_data) + fh.write(filename.replace('images','data')+"\n") + s.append((os.path.split(filename))[1]) + +# предполагается, что "images" и "annotations" следуют в одном и том же порядке +c = 0 +for i in y["annotations"]: + bbox = i["bbox"] + im_h = i["height"] + im_w = i["width"] + rel = convert2relative(im_h,im_w,bbox) + fn = (os.path.splitext(s[c]))[0] # только имя файла + with open(os.path.join(res_data,fn+".txt"), "w") as fh: + # формат: + fh.write("0 "+'{:-f} {:-f} {:-f} {:-f}'.format(rel[0],rel[1],rel[2],rel[3])+"\n") + c += 1 diff --git a/ObjectDetection/objs2Yolov4dataset.py b/ObjectDetection/objs2Yolov4dataset.py new file mode 100644 index 0000000..d84e839 --- /dev/null +++ b/ObjectDetection/objs2Yolov4dataset.py @@ -0,0 +1,266 @@ +import blenderproc as bproc +""" + objs2Yolov4dataset + Общая задача: обнаружение объекта (Object detection) + Реализуемая функция: создание датасета в формате YoloV4 для серии заданных объектов (*.obj) в заданной сцене (*.blend) + Используется модуль blenderproc + + 17.02.2023 @shalenikol release 0.1 +""" +import sys +import numpy as np +import argparse +import random +import os +import shutil +import json + +def convert2relative(height, width, bbox): + """ + YOLO format use relative coordinates for annotation + """ + x, y, w, h = bbox + return x/width, y/height, w/width, h/height + +parser = argparse.ArgumentParser() +parser.add_argument('scene', nargs='?', default="resources/sklad.blend", help="Path to the scene object.") +parser.add_argument('obj_path', nargs='?', default="resources/in_obj", help="Path to the object files.") +parser.add_argument('output_dir', nargs='?', default="output", help="Path to where the final files, will be saved") +parser.add_argument('vhacd_path', nargs='?', default="blenderproc_resources/vhacd", help="The directory in which vhacd should be installed or is already installed.") +parser.add_argument('--imgs', default=2, type=int, help="The number of times the objects should be rendered.") +args = parser.parse_args() + +if not os.path.isdir(args.obj_path): + print(f"{args.obj_path} : no object directory") + sys.exit() + +if not os.path.isdir(args.output_dir): + os.mkdir(args.output_dir) + +bproc.init() + +# ? загрузим свет из сцены +#cam = bproc.loader.load_blend(args.scene, data_blocks=["cameras"]) +#lights = bproc.loader.load_blend(args.scene, data_blocks=["lights"]) + +# загрузим объекты +list_files = os.listdir(args.obj_path) +meshs = [] +i = 0 +for f in list_files: + if (os.path.splitext(f))[1] == ".obj": + f = os.path.join(args.obj_path, f) # путь к файлу объекта + if os.path.isfile(f): + meshs += bproc.loader.load_obj(f) + i += 1 + +if i == 0: + print("Objects not found") + sys.exit() + +for i,o in enumerate(meshs): + o.set_cp("category_id", i+1) + +# загрузим сцену +scene = bproc.loader.load_blend(args.scene, data_blocks=["objects"]) +#scene = bproc.loader.load_obj(args.scene) + +# найдём пол +floor = None +for o in scene: + o.set_cp("category_id", 999) + s = o.get_name() + if s.find("floor") >= 0: + floor = o +if floor == None: + print("Floor not found in the scene") + sys.exit() + +floor.enable_rigidbody(False, collision_shape='BOX') + +objs = meshs + scene + +for obj in meshs: + # Make the object actively participate in the physics simulation + obj.enable_rigidbody(active=True, collision_shape="COMPOUND") + # Also use convex decomposition as collision shapes + obj.build_convex_decomposition_collision_shape(args.vhacd_path) + +with open(os.path.join(args.output_dir,"res.txt"), "w") as fh: +# fh.write(str(type(scene[0]))+"\n") + i = 0 + for o in objs: + i += 1 + loc = o.get_location() + euler = o.get_rotation_euler() + fh.write(f"{i} : {o.get_name()} {loc} {euler}\n") + +# define a light and set its location and energy level +light = bproc.types.Light() +light.set_type("POINT") +light.set_location([5, -5, 5]) +#light.set_energy(900) +#light.set_color([0.7, 0.7, 0.7]) + +light1 = bproc.types.Light(name="light1") +light1.set_type("SUN") +light1.set_location([0, 0, 0]) +light1.set_rotation_euler([-0.063, 0.6177, -0.1985]) +#light1.set_energy(7) +light1.set_color([1, 1, 1]) +""" +# Sample its location around the object +light.set_location(bproc.sampler.shell( + center=obj.get_location(), + radius_min=2.5, + radius_max=5, + elevation_min=1, + elevation_max=89 +)) +""" + +# define the camera intrinsics +bproc.camera.set_intrinsics_from_blender_params(1, 640, 480, lens_unit="FOV") +bproc.renderer.enable_segmentation_output(map_by=["category_id", "instance", "name"]) + +res_dir = os.path.join(args.output_dir, 'coco_data') +# Цикл рендеринга +n = 3 # количество сэмплов для каждой локации камеры +# Do multiple times: Position the shapenet objects using the physics simulator and render X images with random camera poses +for r in range(args.imgs): + # Randomly set the color and energy + light.set_color(np.random.uniform([0.5, 0.5, 0.5], [1, 1, 1])) + light.set_energy(random.uniform(500, 1000)) + light1.set_energy(random.uniform(3, 11)) + + for i,o in enumerate(objs): + mat = o.get_materials()[0] + mat.set_principled_shader_value("Specular", random.uniform(0, 1)) + mat.set_principled_shader_value("Roughness", random.uniform(0, 1)) + mat.set_principled_shader_value("Base Color", np.random.uniform([0, 0, 0, 1], [1, 1, 1, 1])) + mat.set_principled_shader_value("Metallic", random.uniform(0, 1)) + + # Clear all key frames from the previous run + bproc.utility.reset_keyframes() + + # Define a function that samples 6-DoF poses + def sample_pose(obj: bproc.types.MeshObject): + obj.set_location(np.random.uniform([-1, -1.5, 0.2], [1, 2, 1.2])) #[-1, -1, 0], [1, 1, 2])) + obj.set_rotation_euler(bproc.sampler.uniformSO3()) + + # Sample the poses of all shapenet objects above the ground without any collisions in-between + bproc.object.sample_poses(meshs, objects_to_check_collisions = meshs + [floor], sample_pose_func = sample_pose) + + # Run the simulation and fix the poses of the shapenet objects at the end + bproc.object.simulate_physics_and_fix_final_poses(min_simulation_time=4, max_simulation_time=20, check_object_interval=1) + + # Find point of interest, all cam poses should look towards it + poi = bproc.object.compute_poi(meshs) + + coord_max = [0.1, 0.1, 0.1] + coord_min = [0., 0., 0.] + + with open(os.path.join(args.output_dir,"res.txt"), "a") as fh: + fh.write("*****************\n") + fh.write(f"{r}) poi = {poi}\n") + i = 0 + for o in meshs: + i += 1 + loc = o.get_location() + euler = o.get_rotation_euler() + fh.write(f" {i} : {o.get_name()} {loc} {euler}\n") + for j in range(3): + if loc[j] < coord_min[j]: + coord_min[j] = loc[j] + if loc[j] > coord_max[j]: + coord_max[j] = loc[j] + + # Sample up to X camera poses + #an = np.random.uniform(0.78, 1.2) #1. #0.35 + for i in range(5): + # Sample location + location = bproc.sampler.shell(center=[0, 0, 0], + radius_min=1.1, + radius_max=3.3, + elevation_min=5, + elevation_max=89) + # координата, по которой будем сэмплировать положение камеры + j = random.randint(0, 2) + # разовый сдвиг по случайной координате + d = (coord_max[j] - coord_min[j]) / n + if location[j] < 0: + d = -d + for k in range(n): + # Compute rotation based on vector going from location towards poi + rotation_matrix = bproc.camera.rotation_from_forward_vec(poi - location, inplane_rot=np.random.uniform(-0.7854, 0.7854)) + # Add homog cam pose based on location an rotation + cam2world_matrix = bproc.math.build_transformation_mat(location, rotation_matrix) + bproc.camera.add_camera_pose(cam2world_matrix) + location[j] -= d + #world_matrix = bproc.math.build_transformation_mat([2.3, -0.4, 0.66], [1.396, 0., an]) + #bproc.camera.add_camera_pose(world_matrix) + #an += 0.2 + + # render the whole pipeline + data = bproc.renderer.render() + + # Write data to coco file + bproc.writer.write_coco_annotations(res_dir, + instance_segmaps=data["instance_segmaps"], + instance_attribute_maps=data["instance_attribute_maps"], + color_file_format='JPEG', + colors=data["colors"], + append_to_existing_output=True) + +#загрузим аннотацию +with open(os.path.join(res_dir,"coco_annotations.json"), "r") as fh: + y = json.load(fh) + +# список имен объектов +j = 0 +obj_list = [] +with open(os.path.join(res_dir,"obj.names"), "w") as fh: + for cat in y["categories"]: + if cat["id"] < 999: + n = cat["name"] + i = cat["id"] + obj_list.append([n,i,j]) + fh.write(n+"\n") + j += 1 + +# содадим или очистим папку data для датасета +res_data = os.path.join(res_dir, 'data') +if os.path.isdir(res_data): + for f in os.listdir(res_data): + os.remove(os.path.join(res_data, f)) +else: + os.mkdir(res_data) + +# список имен файлов с изображениями +img_list = [] +with open(os.path.join(res_dir,"images.txt"), "w") as fh: + for i in y["images"]: + filename = i["file_name"] + shutil.copy(os.path.join(res_dir,filename),res_data) + fh.write(filename.replace('images','data')+"\n") + img_list.append([i["id"], (os.path.split(filename))[1]]) + +# заполним файлы с метками bbox +for i in y["annotations"]: + cat_id = i["category_id"] + if cat_id < 999: + im_id = i["image_id"] + bbox = i["bbox"] + im_h = i["height"] + im_w = i["width"] + rel = convert2relative(im_h,im_w,bbox) + + # находим индекс списка с нужным изображением + j = next(k for k, (x, _) in enumerate(img_list) if x == im_id) + filename = img_list[j][1] + fn = (os.path.splitext(filename))[0] # только имя файла + with open(os.path.join(res_data,fn+".txt"), "a") as fh: + # находим индекс списка с нужным объектом + j = next(k for k, (_, x, _) in enumerate(obj_list) if x == cat_id) + # формат: + fh.write(f"{obj_list[j][2]} {rel[0]} {rel[1]} {rel[2]} {rel[3]}\n") diff --git a/ObjectDetection/yolov4_min.cfg b/ObjectDetection/yolov4_min.cfg new file mode 100644 index 0000000..32f07de --- /dev/null +++ b/ObjectDetection/yolov4_min.cfg @@ -0,0 +1,1160 @@ +[net] +# Testing +#batch=1 +#subdivisions=1 +# Training +batch=64 +subdivisions=64 +width=416 +height=416 +channels=3 +momentum=0.949 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.001 +burn_in=1000 +max_batches = 6000 +policy=steps +steps=4800,5400 +scales=.1,.1 + +#cutmix=1 +mosaic=1 + +#:104x104 54:52x52 85:26x26 104:13x13 for 416 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=32 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-7 + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-10 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-28 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-28 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-16 + +[convolutional] +batch_normalize=1 +filters=1024 +size=1 +stride=1 +pad=1 +activation=mish +stopbackward=800 + +########################## + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +### SPP ### +[maxpool] +stride=1 +size=5 + +[route] +layers=-2 + +[maxpool] +stride=1 +size=9 + +[route] +layers=-4 + +[maxpool] +stride=1 +size=13 + +[route] +layers=-1,-3,-5,-6 +### End SPP ### + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[upsample] +stride=2 + +[route] +layers = 85 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[route] +layers = -1, -3 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[upsample] +stride=2 + +[route] +layers = 54 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[route] +layers = -1, -3 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +########################## + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=18 +activation=linear + + +[yolo] +mask = 0,1,2 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 +classes=1 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +scale_x_y = 1.2 +iou_thresh=0.213 +cls_normalizer=1.0 +iou_normalizer=0.07 +iou_loss=ciou +nms_kind=greedynms +beta_nms=0.6 +max_delta=5 + + +[route] +layers = -4 + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=256 +activation=leaky + +[route] +layers = -1, -16 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=18 +activation=linear + + +[yolo] +mask = 3,4,5 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 +classes=1 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +scale_x_y = 1.1 +iou_thresh=0.213 +cls_normalizer=1.0 +iou_normalizer=0.07 +iou_loss=ciou +nms_kind=greedynms +beta_nms=0.6 +max_delta=5 + + +[route] +layers = -4 + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=512 +activation=leaky + +[route] +layers = -1, -37 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=18 +activation=linear + + +[yolo] +mask = 6,7,8 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 +classes=1 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +random=0 +scale_x_y = 1.05 +iou_thresh=0.213 +cls_normalizer=1.0 +iou_normalizer=0.07 +iou_loss=ciou +nms_kind=greedynms +beta_nms=0.6 +max_delta=5 + diff --git a/ObjectDetection/yolov4_min.data b/ObjectDetection/yolov4_min.data new file mode 100644 index 0000000..14a4f37 --- /dev/null +++ b/ObjectDetection/yolov4_min.data @@ -0,0 +1,7 @@ +classes= 1 +train = i_train.txt +valid = i_val.txt +names = obj.names +backup = backup +eval=coco + diff --git a/ObjectDetection/yolov4_objs2.cfg b/ObjectDetection/yolov4_objs2.cfg new file mode 100644 index 0000000..8c09f4e --- /dev/null +++ b/ObjectDetection/yolov4_objs2.cfg @@ -0,0 +1,1159 @@ +[net] +# Testing +#batch=1 +#subdivisions=1 +# Training +batch=64 +subdivisions=16 +width=416 +height=416 +channels=3 +momentum=0.949 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.001 +burn_in=1000 +max_batches = 12000 +policy=steps +steps=9600,10800 +scales=.1,.1 + +#cutmix=1 +mosaic=1 + +#:104x104 54:52x52 85:26x26 104:13x13 for 416 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=32 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-7 + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-10 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-28 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-28 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +# Downsample + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=2 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -2 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=mish + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=mish + +[route] +layers = -1,-16 + +[convolutional] +batch_normalize=1 +filters=1024 +size=1 +stride=1 +pad=1 +activation=mish +stopbackward=800 + +########################## + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +### SPP ### +[maxpool] +stride=1 +size=5 + +[route] +layers=-2 + +[maxpool] +stride=1 +size=9 + +[route] +layers=-4 + +[maxpool] +stride=1 +size=13 + +[route] +layers=-1,-3,-5,-6 +### End SPP ### + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[upsample] +stride=2 + +[route] +layers = 85 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[route] +layers = -1, -3 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[upsample] +stride=2 + +[route] +layers = 54 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[route] +layers = -1, -3 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +########################## + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=33 +activation=linear + + +[yolo] +mask = 0,1,2 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 +classes=6 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +scale_x_y = 1.2 +iou_thresh=0.213 +cls_normalizer=1.0 +iou_normalizer=0.07 +iou_loss=ciou +nms_kind=greedynms +beta_nms=0.6 +max_delta=5 + + +[route] +layers = -4 + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=256 +activation=leaky + +[route] +layers = -1, -16 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=512 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=33 +activation=linear + + +[yolo] +mask = 3,4,5 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 +classes=6 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +scale_x_y = 1.1 +iou_thresh=0.213 +cls_normalizer=1.0 +iou_normalizer=0.07 +iou_loss=ciou +nms_kind=greedynms +beta_nms=0.6 +max_delta=5 + + +[route] +layers = -4 + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=512 +activation=leaky + +[route] +layers = -1, -37 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=33 +activation=linear + + +[yolo] +mask = 6,7,8 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 +classes=6 +num=9 +jitter=.3 +ignore_thresh = .7 +truth_thresh = 1 +random=0 +scale_x_y = 1.05 +iou_thresh=0.213 +cls_normalizer=1.0 +iou_normalizer=0.07 +iou_loss=ciou +nms_kind=greedynms +beta_nms=0.6 +max_delta=5 diff --git a/ObjectDetection/yolov4_objs2.data b/ObjectDetection/yolov4_objs2.data new file mode 100644 index 0000000..dd29275 --- /dev/null +++ b/ObjectDetection/yolov4_objs2.data @@ -0,0 +1,7 @@ +classes= 6 +train = i_train.txt +valid = i_val.txt +names = obj.names +backup = backup +eval=coco +