Добавлен файл анализа gcode

This commit is contained in:
Mark Voltov 2023-04-21 21:24:02 +00:00 committed by Igor Brylyov
parent e65236aab6
commit 7cadf0741f

769
pddl/tools/gcoder.py Normal file
View file

@ -0,0 +1,769 @@
#!/usr/bin/env python3
#
# This file is part of the Printrun suite.
#
# Printrun is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Printrun is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# # along with Printrun. If not, see <http://www.gnu.org/licenses/>.
# Добавлен файл программы, проводящей анализ файла .gcode и на основе полученных данных вычисляющая материальные и временные затраты на 3д-печать.
# Программа вычисляет габариты задания, длину затрачиваемой нити филамента, длительность маршрута движения головки принтера и длительность печати.
# Эксперименты показывают, что на данный момент есть расхождение между реальным временем и вычисленным с помощью программы,0 в зависимости от файла, на 20-40% (недооценка вычисленной длительности в сравнении с реальной). Остальные результаты выглядят адекватными, но проверить их сложнее.
import sys
import re
import math
import datetime
import logging
from array import array
gcode_parsed_args = ["x", "y", "e", "f", "z", "i", "j"]
gcode_parsed_nonargs = 'gtmnd'
to_parse = "".join(gcode_parsed_args) + gcode_parsed_nonargs
gcode_exp = re.compile("\([^\(\)]*\)|;.*|[/\*].*\n|([%s])\s*([-+]?[0-9]*\.?[0-9]*)" % to_parse)
gcode_strip_comment_exp = re.compile("\([^\(\)]*\)|;.*|[/\*].*\n")
m114_exp = re.compile("\([^\(\)]*\)|[/\*].*\n|([XYZ]):?([-+]?[0-9]*\.?[0-9]*)")
specific_exp = "(?:\([^\(\)]*\))|(?:;.*)|(?:[/\*].*\n)|(%s[-+]?[0-9]*\.?[0-9]*)"
move_gcodes = ["G0", "G1", "G2", "G3"]
class PyLine:
__slots__ = ('x', 'y', 'z', 'e', 'f', 'i', 'j',
'raw', 'command', 'is_move',
'relative', 'relative_e',
'current_x', 'current_y', 'current_z', 'extruding',
'current_tool',
'gcview_end_vertex')
def __init__(self, l):
self.raw = l
def __getattr__(self, name):
return None
class PyLightLine:
__slots__ = ('raw', 'command')
def __init__(self, l):
self.raw = l
def __getattr__(self, name):
return None
try:
from . import gcoder_line
Line = gcoder_line.GLine
LightLine = gcoder_line.GLightLine
except Exception as e:
logging.warning("Memory-efficient GCoder implementation unavailable: %s" % e)
Line = PyLine
LightLine = PyLightLine
def find_specific_code(line, code):
exp = specific_exp % code
bits = [bit for bit in re.findall(exp, line.raw) if bit]
if not bits: return None
else: return float(bits[0][1:])
def S(line):
return find_specific_code(line, "S")
def P(line):
return find_specific_code(line, "P")
def split(line):
split_raw = gcode_exp.findall(line.raw.lower())
if split_raw and split_raw[0][0] == "n":
del split_raw[0]
if not split_raw:
line.command = line.raw
line.is_move = False
logging.warning("raw G-Code line \"%s\" could not be parsed" % line.raw)
return [line.raw]
command = split_raw[0]
line.command = command[0].upper() + command[1]
line.is_move = line.command in move_gcodes
return split_raw
def parse_coordinates(line, split_raw, imperial = False, force = False):
# Not a G-line, we don't want to parse its arguments
if not force and line.command[0] != "G":
return
unit_factor = 25.4 if imperial else 1
for bit in split_raw:
code = bit[0]
if code not in gcode_parsed_nonargs and bit[1]:
setattr(line, code, unit_factor * float(bit[1]))
class Layer(list):
__slots__ = ("duration", "z")
def __init__(self, lines, z = None):
super(Layer, self).__init__(lines)
self.z = z
self.duration = 0
class GCode:
line_class = Line
lines = None
layers = None
all_layers = None
layer_idxs = None
line_idxs = None
append_layer = None
append_layer_id = None
imperial = False
cutting = False
relative = False
relative_e = False
current_tool = 0
# Home position: current absolute position counted from machine origin
home_x = 0
home_y = 0
home_z = 0
# Current position: current absolute position counted from machine origin
current_x = 0
current_y = 0
current_z = 0
# For E this is the absolute position from machine start
current_e = 0
current_e_multi=[0]
total_e = 0
total_e_multi=[0]
max_e = 0
max_e_multi=[0]
# Current feedrate
current_f = 0
# Offset: current offset between the machine origin and the machine current
# absolute coordinate system (as shifted by G92s)
offset_x = 0
offset_y = 0
offset_z = 0
offset_e = 0
offset_e_multi = [0]
# Expected behavior:
# - G28 X => X axis is homed, offset_x <- 0, current_x <- home_x
# - G92 Xk => X axis does not move, so current_x does not change
# and offset_x <- current_x - k,
# - absolute G1 Xk => X axis moves, current_x <- offset_x + k
# How to get...
# current abs X from machine origin: current_x
# current abs X in machine current coordinate system: current_x - offset_x
filament_length = None
filament_length_multi=[0]
duration = None
xmin = None
xmax = None
ymin = None
ymax = None
zmin = None
zmax = None
width = None
depth = None
height = None
est_layer_height = None
# abs_x is the current absolute X in machine current coordinate system
# (after the various G92 transformations) and can be used to store the
# absolute position of the head at a given time
def _get_abs_x(self):
return self.current_x - self.offset_x
abs_x = property(_get_abs_x)
def _get_abs_y(self):
return self.current_y - self.offset_y
abs_y = property(_get_abs_y)
def _get_abs_z(self):
return self.current_z - self.offset_z
abs_z = property(_get_abs_z)
def _get_abs_e(self):
return self.current_e - self.offset_e
abs_e = property(_get_abs_e)
def _get_abs_e_multi(self,i):
return self.current_e_multi[i] - self.offset_e_multi[i]
abs_e = property(_get_abs_e)
def _get_abs_pos(self):
return (self.abs_x, self.abs_y, self.abs_z)
abs_pos = property(_get_abs_pos)
def _get_current_pos(self):
return (self.current_x, self.current_y, self.current_z)
current_pos = property(_get_current_pos)
def _get_home_pos(self):
return (self.home_x, self.home_y, self.home_z)
def _set_home_pos(self, home_pos):
if home_pos:
self.home_x, self.home_y, self.home_z = home_pos
home_pos = property(_get_home_pos, _set_home_pos)
def _get_layers_count(self):
return len(self.all_zs)
layers_count = property(_get_layers_count)
def __init__(self, data = None, home_pos = None,
layer_callback = None, deferred = False,
cutting_as_extrusion = False):
self.cutting_as_extrusion = cutting_as_extrusion
if not deferred:
self.prepare(data, home_pos, layer_callback)
def prepare(self, data = None, home_pos = None, layer_callback = None):
self.home_pos = home_pos
if data:
line_class = self.line_class
self.lines = [line_class(l2) for l2 in
(l.strip() for l in data)
if l2]
self._preprocess(build_layers = True,
layer_callback = layer_callback)
else:
self.lines = []
self.append_layer_id = 0
self.append_layer = Layer([])
self.all_layers = [self.append_layer]
self.all_zs = set()
self.layers = {}
self.layer_idxs = array('I', [])
self.line_idxs = array('I', [])
def has_index(self, i):
return i < len(self)
def __len__(self):
return len(self.line_idxs)
def __iter__(self):
return self.lines.__iter__()
def prepend_to_layer(self, commands, layer_idx):
# Prepend commands in reverse order
commands = [c.strip() for c in commands[::-1] if c.strip()]
layer = self.all_layers[layer_idx]
# Find start index to append lines
# and end index to append new indices
start_index = self.layer_idxs.index(layer_idx)
for i in range(start_index, len(self.layer_idxs)):
if self.layer_idxs[i] != layer_idx:
end_index = i
break
else:
end_index = i + 1
end_line = self.line_idxs[end_index - 1]
for i, command in enumerate(commands):
gline = Line(command)
# Split to get command
split(gline)
# Force is_move to False
gline.is_move = False
# Insert gline at beginning of layer
layer.insert(0, gline)
# Insert gline at beginning of list
self.lines.insert(start_index, gline)
# Update indices arrays & global gcodes list
self.layer_idxs.insert(end_index + i, layer_idx)
self.line_idxs.insert(end_index + i, end_line + i + 1)
return commands[::-1]
def rewrite_layer(self, commands, layer_idx):
# Prepend commands in reverse order
commands = [c.strip() for c in commands[::-1] if c.strip()]
layer = self.all_layers[layer_idx]
# Find start index to append lines
# and end index to append new indices
start_index = self.layer_idxs.index(layer_idx)
for i in range(start_index, len(self.layer_idxs)):
if self.layer_idxs[i] != layer_idx:
end_index = i
break
else:
end_index = i + 1
self.layer_idxs = self.layer_idxs[:start_index] + array('I', len(commands) * [layer_idx]) + self.layer_idxs[end_index:]
self.line_idxs = self.line_idxs[:start_index] + array('I', range(len(commands))) + self.line_idxs[end_index:]
del self.lines[start_index:end_index]
del layer[:]
for i, command in enumerate(commands):
gline = Line(command)
# Split to get command
split(gline)
# Force is_move to False
gline.is_move = False
# Insert gline at beginning of layer
layer.insert(0, gline)
# Insert gline at beginning of list
self.lines.insert(start_index, gline)
return commands[::-1]
def append(self, command, store = True):
command = command.strip()
if not command:
return
gline = Line(command)
self._preprocess([gline])
if store:
self.lines.append(gline)
self.append_layer.append(gline)
self.layer_idxs.append(self.append_layer_id)
self.line_idxs.append(len(self.append_layer)-1)
return gline
def _preprocess(self, lines = None, build_layers = False,
layer_callback = None):
"""Checks for imperial/relativeness settings and tool changes"""
if not lines:
lines = self.lines
imperial = self.imperial
relative = self.relative
relative_e = self.relative_e
current_tool = self.current_tool
current_x = self.current_x
current_y = self.current_y
current_z = self.current_z
offset_x = self.offset_x
offset_y = self.offset_y
offset_z = self.offset_z
# Extrusion computation
current_e = self.current_e
offset_e = self.offset_e
total_e = self.total_e
max_e = self.max_e
cutting = self.cutting
current_e_multi = self.current_e_multi[current_tool]
offset_e_multi = self.offset_e_multi[current_tool]
total_e_multi = self.total_e_multi[current_tool]
max_e_multi = self.max_e_multi[current_tool]
# Store this one out of the build_layers scope for efficiency
cur_layer_has_extrusion = False
# Initialize layers and other global computations
if build_layers:
# Bounding box computation
xmin = float("inf")
ymin = float("inf")
zmin = 0
xmax = float("-inf")
ymax = float("-inf")
zmax = float("-inf")
# Also compute extrusion-only values
xmin_e = float("inf")
ymin_e = float("inf")
xmax_e = float("-inf")
ymax_e = float("-inf")
# Duration estimation
# TODO:
# get device caps from firmware: max speed, acceleration/axis
# (including extruder)
# calculate the maximum move duration accounting for above ;)
lastx = lasty = lastz = None
laste = lastf = 0
lastdx = 0
lastdy = 0
x = y = e = f = 0.0
currenttravel = 0.0
moveduration = 0.0
totalduration = 0.0
acceleration = 2000.0 # mm/s^2
layerbeginduration = 0.0
# Initialize layers
all_layers = self.all_layers = []
all_zs = self.all_zs = set()
layer_idxs = self.layer_idxs = []
line_idxs = self.line_idxs = []
last_layer_z = None
prev_z = None
cur_z = None
cur_lines = []
def append_lines(lines, isEnd):
if not build_layers:
return
nonlocal layerbeginduration, last_layer_z
if cur_layer_has_extrusion and prev_z != last_layer_z \
or not all_layers:
layer = Layer([], prev_z)
last_layer_z = prev_z
finished_layer = len(all_layers)-1 if all_layers else None
all_layers.append(layer)
all_zs.add(prev_z)
else:
layer = all_layers[-1]
finished_layer = None
layer_id = len(all_layers)-1
layer_line = len(layer)
for i, ln in enumerate(lines):
layer.append(ln)
layer_idxs.append(layer_id)
line_idxs.append(layer_line+i)
layer.duration += totalduration - layerbeginduration
layerbeginduration = totalduration
if layer_callback:
# we finish a layer when inserting the next
if finished_layer is not None:
layer_callback(self, finished_layer)
# notify about end layer, there will not be next
if isEnd:
layer_callback(self, layer_id)
if self.line_class != Line:
get_line = lambda l: Line(l.raw)
else:
get_line = lambda l: l
for true_line in lines:
# # Parse line
# Use a heavy copy of the light line to preprocess
line = get_line(true_line)
split_raw = split(line)
if line.command:
# Update properties
if line.is_move:
line.relative = relative
line.relative_e = relative_e
line.current_tool = current_tool
elif line.command == "G20":
imperial = True
elif line.command == "G21":
imperial = False
elif line.command == "G90":
relative = False
relative_e = False
elif line.command == "G91":
relative = True
relative_e = True
elif line.command == "M82":
relative_e = False
elif line.command == "M83":
relative_e = True
elif line.command[0] == "T":
try:
current_tool = int(line.command[1:])
except:
pass #handle T? by treating it as no tool change
while current_tool+1 > len(self.current_e_multi):
self.current_e_multi+=[0]
self.offset_e_multi+=[0]
self.total_e_multi+=[0]
self.max_e_multi+=[0]
elif line.command == "M3" or line.command == "M4":
cutting = True
elif line.command == "M5":
cutting = False
current_e_multi = self.current_e_multi[current_tool]
offset_e_multi = self.offset_e_multi[current_tool]
total_e_multi = self.total_e_multi[current_tool]
max_e_multi = self.max_e_multi[current_tool]
if line.command[0] == "G":
parse_coordinates(line, split_raw, imperial)
# Compute current position
if line.is_move:
x = line.x
y = line.y
z = line.z
if line.f is not None:
self.current_f = line.f
if line.relative:
x = current_x + (x or 0)
y = current_y + (y or 0)
z = current_z + (z or 0)
else:
if x is not None: x = x + offset_x
if y is not None: y = y + offset_y
if z is not None: z = z + offset_z
if x is not None: current_x = x
if y is not None: current_y = y
if z is not None: current_z = z
elif line.command == "G28":
home_all = not any([line.x, line.y, line.z])
if home_all or line.x is not None:
offset_x = 0
current_x = self.home_x
if home_all or line.y is not None:
offset_y = 0
current_y = self.home_y
if home_all or line.z is not None:
offset_z = 0
current_z = self.home_z
elif line.command == "G92":
if line.x is not None: offset_x = current_x - line.x
if line.y is not None: offset_y = current_y - line.y
if line.z is not None: offset_z = current_z - line.z
line.current_x = current_x
line.current_y = current_y
line.current_z = current_z
# # Process extrusion
if line.e is not None:
if line.is_move:
if line.relative_e:
line.extruding = line.e > 0
total_e += line.e
current_e += line.e
total_e_multi += line.e
current_e_multi += line.e
else:
new_e = line.e + offset_e
line.extruding = new_e > current_e
total_e += new_e - current_e
current_e = new_e
new_e_multi = line.e + offset_e_multi
total_e_multi += new_e_multi - current_e_multi
current_e_multi = new_e_multi
max_e = max(max_e, total_e)
max_e_multi=max(max_e_multi, total_e_multi)
cur_layer_has_extrusion |= line.extruding and (line.x is not None or line.y is not None)
elif line.command == "G92":
offset_e = current_e - line.e
offset_e_multi = current_e_multi - line.e
if cutting and self.cutting_as_extrusion:
line.extruding = True
self.current_e_multi[current_tool]=current_e_multi
self.offset_e_multi[current_tool]=offset_e_multi
self.max_e_multi[current_tool]=max_e_multi
self.total_e_multi[current_tool]=total_e_multi
# # Create layers and perform global computations
if build_layers:
# Update bounding box
if line.is_move:
if line.extruding:
if line.current_x is not None:
# G0 X10 ; G1 X20 E5 results in 10..20 even as G0 is not extruding
xmin_e = min(xmin_e, line.current_x, xmin_e if lastx is None else lastx)
xmax_e = max(xmax_e, line.current_x, xmax_e if lastx is None else lastx)
if line.current_y is not None:
ymin_e = min(ymin_e, line.current_y, ymin_e if lasty is None else lasty)
ymax_e = max(ymax_e, line.current_y, ymax_e if lasty is None else lasty)
if max_e <= 0:
if line.current_x is not None:
xmin = min(xmin, line.current_x)
xmax = max(xmax, line.current_x)
if line.current_y is not None:
ymin = min(ymin, line.current_y)
ymax = max(ymax, line.current_y)
# Compute duration
if line.command == "G0" or line.command == "G1":
x = line.x if line.x is not None else (lastx or 0)
y = line.y if line.y is not None else (lasty or 0)
z = line.z if line.z is not None else (lastz or 0)
e = line.e if line.e is not None else laste
# mm/s vs mm/m => divide by 60
f = line.f / 60.0 if line.f is not None else lastf
# given last feedrate and current feedrate calculate the
# distance needed to achieve current feedrate.
# if travel is longer than req'd distance, then subtract
# distance to achieve full speed, and add the time it took
# to get there.
# then calculate the time taken to complete the remaining
# distance
# FIXME: this code has been proven to be super wrong when 2
# subsquent moves are in opposite directions, as requested
# speed is constant but printer has to fully decellerate
# and reaccelerate
# The following code tries to fix it by forcing a full
# reacceleration if this move is in the opposite direction
# of the previous one
dx = x - (lastx or 0)
dy = y - (lasty or 0)
if dx * lastdx + dy * lastdy <= 0:
lastf = 0
currenttravel = math.hypot(dx, dy)
if currenttravel == 0:
if line.z is not None:
currenttravel = abs(line.z) if line.relative else abs(line.z - (lastz or 0))
elif line.e is not None:
currenttravel = abs(line.e) if line.relative_e else abs(line.e - laste)
# Feedrate hasn't changed, no acceleration/decceleration planned
if f == lastf:
moveduration = currenttravel / f if f != 0 else 0.
else:
# FIXME: review this better
# this looks wrong : there's little chance that the feedrate we'll decelerate to is the previous feedrate
# shouldn't we instead look at three consecutive moves ?
distance = 2 * abs(((lastf + f) * (f - lastf) * 0.5) / acceleration) # multiply by 2 because we have to accelerate and decelerate
if distance <= currenttravel and lastf + f != 0 and f != 0:
moveduration = 2 * distance / (lastf + f) # This is distance / mean(lastf, f)
moveduration += (currenttravel - distance) / f
else:
moveduration = 2 * currenttravel / (lastf + f) # This is currenttravel / mean(lastf, f)
# FIXME: probably a little bit optimistic, but probably a much better estimate than the previous one:
# moveduration = math.sqrt(2 * distance / acceleration) # probably buggy : not taking actual travel into account
lastdx = dx
lastdy = dy
totalduration += moveduration
lastx = x
lasty = y
lastz = z
laste = e
lastf = f
elif line.command == "G4":
moveduration = P(line)
if moveduration:
moveduration /= 1000.0
totalduration += moveduration
# FIXME : looks like this needs to be tested with "lift Z on move"
if line.z is not None:
if line.command == "G92":
cur_z = line.z
elif line.is_move:
if line.relative and cur_z is not None:
cur_z += line.z
else:
cur_z = line.z
if cur_z != prev_z and cur_layer_has_extrusion:
append_lines(cur_lines, False)
cur_lines = []
cur_layer_has_extrusion = False
if build_layers:
cur_lines.append(true_line)
prev_z = cur_z
# ## Loop done
# Store current status
self.imperial = imperial
self.relative = relative
self.relative_e = relative_e
self.current_tool = current_tool
self.current_x = current_x
self.current_y = current_y
self.current_z = current_z
self.offset_x = offset_x
self.offset_y = offset_y
self.offset_z = offset_z
self.current_e = current_e
self.offset_e = offset_e
self.max_e = max_e
self.total_e = total_e
self.current_e_multi[current_tool]=current_e_multi
self.offset_e_multi[current_tool]=offset_e_multi
self.max_e_multi[current_tool]=max_e_multi
self.total_e_multi[current_tool]=total_e_multi
self.cutting = cutting
# Finalize layers
if build_layers:
if cur_lines:
append_lines(cur_lines, True)
self.append_layer_id = len(all_layers)
self.append_layer = Layer([])
self.append_layer.duration = 0
all_layers.append(self.append_layer)
self.layer_idxs = array('I', layer_idxs)
self.line_idxs = array('I', line_idxs)
# Compute bounding box
all_zs = self.all_zs.union({zmin}).difference({None})
zmin = min(all_zs)
zmax = max(all_zs)
self.filament_length = self.max_e
while len(self.filament_length_multi)<len(self.max_e_multi):
self.filament_length_multi+=[0]
for i in enumerate(self.max_e_multi):
self.filament_length_multi[i[0]]=i[1]
if self.filament_length > 0:
self.xmin = xmin_e if not math.isinf(xmin_e) else 0
self.xmax = xmax_e if not math.isinf(xmax_e) else 0
self.ymin = ymin_e if not math.isinf(ymin_e) else 0
self.ymax = ymax_e if not math.isinf(ymax_e) else 0
else:
self.xmin = xmin if not math.isinf(xmin) else 0
self.xmax = xmax if not math.isinf(xmax) else 0
self.ymin = ymin if not math.isinf(ymin) else 0
self.ymax = ymax if not math.isinf(ymax) else 0
self.zmin = zmin if not math.isinf(zmin) else 0
self.zmax = zmax if not math.isinf(zmax) else 0
self.width = self.xmax - self.xmin
self.depth = self.ymax - self.ymin
self.height = self.zmax - self.zmin
# Finalize duration
totaltime = datetime.timedelta(seconds = int(totalduration))
self.duration = totaltime
def idxs(self, i):
return self.layer_idxs[i], self.line_idxs[i]
def estimate_duration(self):
return self.layers_count, self.duration
class LightGCode(GCode):
line_class = LightLine
def main():
if len(sys.argv) < 2:
print("usage: %s filename.gcode" % sys.argv[0])
return
print("Line object size:", sys.getsizeof(Line("G0 X0")))
print("Light line object size:", sys.getsizeof(LightLine("G0 X0")))
gcode = GCode(open(sys.argv[1], "rU"))
print("Dimensions:")
xdims = (gcode.xmin, gcode.xmax, gcode.width)
print("\tX: %0.02f - %0.02f (%0.02f)" % xdims)
ydims = (gcode.ymin, gcode.ymax, gcode.depth)
print("\tY: %0.02f - %0.02f (%0.02f)" % ydims)
zdims = (gcode.zmin, gcode.zmax, gcode.height)
print("\tZ: %0.02f - %0.02f (%0.02f)" % zdims)
print("Filament used: %0.02fmm" % gcode.filament_length)
for i in enumerate(gcode.filament_length_multi):
print("E%d %0.02fmm" % (i[0],i[1]))
print("Number of layers: %d" % gcode.layers_count)
print("Estimated duration: %s" % gcode.estimate_duration()[1])
if __name__ == '__main__':
main()