framework/simulation/object_detection/obj2Yolov4dataset.py
2024-04-14 18:54:47 +00:00

144 lines
5.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import blenderproc as bproc
"""
obj2Yolov4dataset
Общая задача: обнаружение объекта (Object detection)
Реализуемая функция: создание датасета в формате YoloV4 для заданного объекта (*.obj)
Используется модуль blenderproc
24.01.2023 @shalenikol release 0.1
22.02.2023 @shalenikol release 0.2 исправлен расчёт x,y в convert2relative
"""
import numpy as np
import argparse
import random
import os
import shutil
import json
def convert2relative(height, width, bbox):
"""
YOLO format use relative coordinates for annotation
"""
x, y, w, h = bbox
x += w/2
y += h/2
return x/width, y/height, w/width, h/height
parser = argparse.ArgumentParser()
parser.add_argument('scene', nargs='?', default="resources/robossembler-asset.obj", help="Path to the object file.")
parser.add_argument('output_dir', nargs='?', default="output", help="Path to where the final files, will be saved")
parser.add_argument('--imgs', default=1, type=int, help="The number of times the objects should be rendered.")
args = parser.parse_args()
if not os.path.isdir(args.output_dir):
os.mkdir(args.output_dir)
bproc.init()
# load the objects into the scene
obj = bproc.loader.load_obj(args.scene)[0]
obj.set_cp("category_id", 1)
# Randomly perturbate the material of the object
mat = obj.get_materials()[0]
mat.set_principled_shader_value("Specular", random.uniform(0, 1))
mat.set_principled_shader_value("Roughness", random.uniform(0, 1))
mat.set_principled_shader_value("Base Color", np.random.uniform([0, 0, 0, 1], [1, 1, 1, 1]))
mat.set_principled_shader_value("Metallic", random.uniform(0, 1))
# Create a new light
light = bproc.types.Light()
light.set_type("POINT")
# Sample its location around the object
light.set_location(bproc.sampler.shell(
center=obj.get_location(),
radius_min=1,
radius_max=5,
elevation_min=1,
elevation_max=89
))
# Randomly set the color and energy
light.set_color(np.random.uniform([0.5, 0.5, 0.5], [1, 1, 1]))
light.set_energy(random.uniform(100, 1000))
bproc.camera.set_resolution(640, 480)
# Sample five camera poses
poses = 0
tries = 0
while tries < 10000 and poses < args.imgs:
# Sample random camera location around the object
location = bproc.sampler.shell(
center=obj.get_location(),
radius_min=1,
radius_max=4,
elevation_min=1,
elevation_max=89
)
# Compute rotation based lookat point which is placed randomly around the object
lookat_point = obj.get_location() + np.random.uniform([-0.5, -0.5, -0.5], [0.5, 0.5, 0.5])
rotation_matrix = bproc.camera.rotation_from_forward_vec(lookat_point - location, inplane_rot=np.random.uniform(-0.7854, 0.7854))
# Add homog cam pose based on location an rotation
cam2world_matrix = bproc.math.build_transformation_mat(location, rotation_matrix)
# Only add camera pose if object is still visible
if obj in bproc.camera.visible_objects(cam2world_matrix):
bproc.camera.add_camera_pose(cam2world_matrix)
poses += 1
tries += 1
# Enable transparency so the background becomes transparent
bproc.renderer.set_output_format(enable_transparency=True)
# add segmentation masks (per class and per instance)
bproc.renderer.enable_segmentation_output(map_by=["category_id", "instance", "name"])
# Render RGB images
data = bproc.renderer.render()
# Write data to coco file
res_dir = os.path.join(args.output_dir, 'coco_data')
bproc.writer.write_coco_annotations(res_dir,
instance_segmaps=data["instance_segmaps"],
instance_attribute_maps=data["instance_attribute_maps"],
color_file_format='JPEG',
colors=data["colors"],
append_to_existing_output=True)
#загрузим аннотацию
with open(os.path.join(res_dir,"coco_annotations.json"), "r") as fh:
y = json.load(fh)
# список имен объектов
with open(os.path.join(res_dir,"obj.names"), "w") as fh:
for cat in y["categories"]:
fh.write(cat["name"]+"\n")
# содадим или очистим папку data для датасета
res_data = os.path.join(res_dir, 'data')
if os.path.isdir(res_data):
for f in os.listdir(res_data):
os.remove(os.path.join(res_data, f))
else:
os.mkdir(res_data)
# список имен файлов с изображениями
s = []
with open(os.path.join(res_dir,"images.txt"), "w") as fh:
for i in y["images"]:
filename = i["file_name"]
shutil.copy(os.path.join(res_dir,filename),res_data)
fh.write(filename.replace('images','data')+"\n")
s.append((os.path.split(filename))[1])
# предполагается, что "images" и "annotations" следуют в одном и том же порядке
c = 0
for i in y["annotations"]:
bbox = i["bbox"]
im_h = i["height"]
im_w = i["width"]
rel = convert2relative(im_h,im_w,bbox)
fn = (os.path.splitext(s[c]))[0] # только имя файла
with open(os.path.join(res_data,fn+".txt"), "w") as fh:
# формат: <target> <x-center> <y-center> <width> <height>
fh.write("0 "+'{:-f} {:-f} {:-f} {:-f}'.format(rel[0],rel[1],rel[2],rel[3])+"\n")
c += 1