Добавлена иллюстрация к статье и ряд улучшений к тексту
This commit is contained in:
parent
74aeed9af3
commit
b479c32aac
2 changed files with 32 additions and 20 deletions
BIN
docs/Images/robofactory_art.jpg
Normal file
BIN
docs/Images/robofactory_art.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 818 KiB |
|
@ -1,11 +1,10 @@
|
|||
---
|
||||
title: О проекте
|
||||
title: О проекте Robossembler
|
||||
slug: /
|
||||
---
|
||||

|
||||
|
||||
## Мотивация
|
||||
|
||||
Идея создания роботов, которые воспроизводят сами себя, занимает умы человечества с середины 20 века. Джон фон Нейман - отец-основатель информатики, был одним из первых, кто задачился этим вопросом по серьёзному. Тем не менее, за прошедшие десятилетия, тема так и не вышла за рамки академических кругов. Все известные широкой публике проекты собирающих самих себя машин не нашли своего применения ни в промышленности, ни в повседневной жизни.
|
||||
Идея создания роботов, которые воспроизводят сами себя, занимает умы человечества с середины 20 века. Джон фон Нейман - отец-основатель информатики, был одним из первых, кто озадачился этим вопросом по серьёзному. Тем не менее, за прошедшие десятилетия, тема так и не вышла за рамки академических кругов. Все известные широкой публике [проекты](https://doi.org/10.1146/annurev-control-071819-010010) собирающих самих себя машин не нашли своего применения ни в промышленности, ни в повседневной жизни.
|
||||
|
||||
Вполне возможно, что это происходит по той причине, что самовоспроизводство не рассматривается с практической точки зрения - как технология, способная привнести ощутимый вклад улучшение качества жизни людей и общества. Эксперименты исследовательских ВУЗов лишь подкрепляют эту точку зрения.
|
||||
|
||||
|
@ -13,33 +12,46 @@ slug: /
|
|||
|
||||
То есть с одной стороны мы видим исключительно академические эксперименты, лишённые какой-либо прикладной ценности. С другой стороны мы наблюдаем за тем, как ведущие мировые компании избегают полностью автоматизировать производство.
|
||||
|
||||
В рамках проекта Robossembler мы постараемся разрешить это противоречие и использовать технологии самовоспроизводства для достижения практической пользы. На наш (и не только - см. Чернов А.Ю.) взгляд технологии самовоспроизводства действительно важны - они способны, например, обеспечить зачастую критически важную масштабируемость производственной системы (резко нарастить производство какого-то жизненно-важного для общества ресурса - например, респираторов).
|
||||
В рамках проекта ___Robossembler___ мы постараемся разрешить это противоречие и использовать технологии самовоспроизводства для достижения практической пользы. На наш взгляд технологии самовоспроизводства действительно важны - они способны, например, обеспечить зачастую критически важную масштабируемость производственной системы (резко нарастить производство какого-то жизненно-важного для общества ресурса - например, респираторов).
|
||||
|
||||
## Предпосылки
|
||||
|
||||
Современные производственные системы (заводы, фабрики) представляют собой сложные программно-аппаратные комплексы, состоящие из большого количества компонентов с разной степенью взаимозависимости, которые разрабатываются, изготавливаются и поставляются разными компаниями. Глубокое разделение труда с одной стороны повышает качество, но с другой - затрудняет возможности интеграции компонентов в полностью автоматизированные надсистемы.
|
||||
В свою очередь, задача разработки автономных (_light's out_) или самовоспроизводящихся (_self-replication_) технических систем требует тесной интеграции данных жизненного цикла в рамках общего для всех его подсистем требования «безлюдности». Данное требование также налагает ряд существенных ограничений на дизайн всех компонентов системы и делает почти невозможным разработку и внедрение в рамках _отдельно взятой компании_. Даже наиболее автоматизированные отрасли промышленности (например, автомобильная) не могут уйти от ручного труда; в особенности на сборочных операциях.
|
||||
|
||||
Однако полностью автоматизированное производство обладает и рядом преимуществ, потому как позволяет достичь высокого синергетического эффекта за счёт отказа от
|
||||
* человеко-машинных интерфейсов и требований к эстетичности (в том числе специальная маркировка);
|
||||
* условий эксплуатации, адаптированных под человека (воздух, влажность, освещение, температура);
|
||||
* соблюдения стандартов безопасности, взаимозаменяемости в рамках существующей номенклатуры компонентов, ремонтопригодности.
|
||||
|
||||
То есть разработка подобного рода систем требует пересмотра многих компонентов технических систем и принципов производственного процесса, который в настоящее время ориентирован под сборку, наладку и эксплуатацию человеком.
|
||||
|
||||
Однако то, что невозможно для отдельно взятой компании, может быть возможным для международного движения open source. Открытость процесса разработки и документации посодействует непрерывной интеграции данных жизненного цикла подсистем, разрабатываемых отдельными командами, что затруднительно в условиях закрытых инжиниринговых фирм.
|
||||
|
||||
Также, современный уровень вычислительных систем на текущем этапе их развития делает возможным создание цифровых двойников (_digital twin_) производств, поведение которых в рамках симуляции может быть приближено к реальным физическим объектам. В перспективе станет возможным не дожидаться опытного производства, чтобы проверить какую-то гипотезу, а ограничиться физическим и имитационным моделированием. Разработчики не будут скованы ограничениями существующей компонентной базы и обусловленной этим инерцией мышления. Допустимо придумать всё с нуля — с учётом требования полной автоматизированности.
|
||||
|
||||
## Рамки проекта
|
||||
|
||||
Мы начнём с конца, а именно с процесса сборки, с автоматизацией которого есть проблемы даже у самых технологичных производителей.
|
||||
|
||||
В рамках проекта мы создадим цифровую модель производственной линии, где роботы манипуляторы собирают свои копии и сразу же вводят их в работу, чем и достигается их частичное самовоспроизводство.
|
||||
Мы создадим _цифровую модель_ производственной линии, где роботы-манипуляторы собирают свои копии и сразу же вводят их в работу, чем и достигается частичное самовоспроизводство. Манипуляторы покрывают довольно большой класс производственных задач при наличии разнообразного сменного инструмента, их сборка до сих пор слабо автоматизирована даже у ведущих производителей. Мы покажем каким образом требование "безлюдности" позволит это осуществить.
|
||||
|
||||
Наш подход отличается от подходов современных производителей манипуляторов тем, что мы будем создавать изначально автономную систему, где не предполагается присутствия человека. Мы будем использовать материалы, технологии и условия эксплуатации, которые могут быть недопустимы для неавтономных промышленных систем. После ввода в эксплуатацию производственная линия будет самостоятельно собирать изделия, осуществлять их наладку и ввод в эксплуатацию.
|
||||
|
||||
Таким образом, при наличии достаточного количества поступающих на вход линии комплектующих, линия будет непрерывно наращивать свой производственный потенциал.
|
||||
|
||||
## Почему именно манипуляторы? (а не ЧПУ станки или ещё что-нибудь)
|
||||
|
||||
- манипуляторы покрывают довольно большой класс производственных задач при наличии разнообразного сменного инструмента;
|
||||
- задача сборки манипуляторов до сих пор слабо автоматизирована даже у ведущих производителей. Мы покажем каким образом требование "безлюдности" позволит это осуществить.
|
||||
Наш подход отличается от подходов современных производителей манипуляторов тем, что мы будем создавать _изначально автономную систему_, где не предполагается присутствие человека. Мы будем использовать материалы, технологии и условия эксплуатации, которые могут быть недопустимы для неавтономных промышленных систем. После ввода в эксплуатацию производственная линия будет самостоятельно собирать изделия, осуществлять их наладку и ввод в эксплуатацию. Таким образом, при наличии достаточного количества поступающих на вход линии комплектующих, линия будет непрерывно наращивать свой производственный потенциал.
|
||||
|
||||
Звенья манипулятора будут обладать следующими свойствами:
|
||||
|
||||
1. Конструкция обеспечивает максимальное использование пространства вокруг робота, что хорошо для автономных систем, оперирующих в небольшом объёме, и для совместной сборки несколькими роботами;
|
||||
2. Кабельные и ременные соединения сложны в монтаже, поэтому конструкция манипулятора не будет их предусматривать; вместо этого мы будем стремиться к созданию кабелей-стержней, вмонтированных в роторы моторов;
|
||||
3. Не учитываются требования безопасности и эстетичности (которые строго соблюдаются для коллаборативных роботов).
|
||||
3. Не учитываются требования безопасности и эстетичности (которые соблюдаются для коллаборативных роботов).
|
||||
|
||||
Роботы-манипуляторы будут оснащаться шестиугольными рабочими столами - местами, где будет осуществляться сборка. Столы будут обеспечивать:
|
||||
Роботы-манипуляторы будут оснащаться рабочими столами - местами, где будет осуществляться сборка. Столы будут обеспечивать:
|
||||
|
||||
1. легкое подключение к нему оснований манипуляторов с помощью специальных надёжных электрических разъемов, которые предстоит разработать;
|
||||
2. электропитание и управление - рабочий стол будет включать в себя систему управления для всех подключаемых к нему манипуляторов;
|
||||
3. столы будут подключаться друг к другу, образуя связанную локальной сетью большую производственную линию, где будет возможна организация конвейеров.
|
||||
1. Легкое подключение к нему оснований манипуляторов с помощью специальных надёжных электрических разъемов, которые предстоит разработать;
|
||||
2. Электропитание и управление - рабочий стол будет включать в себя систему управления для всех подключаемых к нему манипуляторов;
|
||||
3. Столы будут подключаться друг к другу, образуя связанную локальной сетью большую производственную линию, где будет возможна организация конвейеров.
|
||||
|
||||
Простота реализации сборки достигается помощью формовки корпусов с помощью компаунда. Благодаря этому мы избавляемся от крепежа и необходимости производить отдельно корпус. Материал компаунда можно подобрать таким образом, чтобы обеспечить оптимальный теплоотвод, дешевизну (без оглядки на безопасность для человека), удобную утилизацию и повторную переработку компонентов манипулятора. Первый кандидат - вспененный полимер на основе кремнезёма(не нефтепродукт). Его легко растворять, склеивать - неисправные манипуляторы будут погружаться в растворитель и разбираться на комплектующие без ущерба для них самих.
|
||||
Простота реализации сборки будет достигнута благодаря формовке корпусов с помощью компаунда. Мы избавимся от крепежа и необходимости производить отдельно корпус. Материал компаунда можно подобрать таким образом, чтобы обеспечить оптимальный теплоотвод, дешевизну (без оглядки на безопасность для человека), удобную утилизацию и повторную переработку компонентов манипулятора. Например, вспененный полимер на основе кремнезёма(не нефтепродукт). Его легко растворять, склеивать - неисправные манипуляторы будут погружаться в растворитель и разбираться на комплектующие без ущерба для них самих.
|
||||
|
||||
## Совершенствование методов разработки
|
||||
|
||||
Разработка самовоспроизводящейся системы, в силу её сложности, потребует вовлечения большого количества людей, новых инженерных решений и интенсивного процесса управления данными жизненного цикла(PLM). Указанная выше модель частично самовоспроизводящейся фабрики может послужить полигоном для отработки открытых децентрализованных методов проектирования и в перспективе обеспечить достаточное для реализации грандиозных проектов масштабирование. Разработка отдельных узлов может вестись отдельными независимыми командами, а интеграция данных жизненного цикла разработки этих узлов может осуществляться через публичную распределённую базу данных. Для взаимодействия разработчиков и существующих в реальности капиталоёмких кибер-физических систем с целью изготовления прототипов или проведения испытаний может использоваться платформа Robonomics, в которой будут публиковаться заказы на изготовление/испытание деталей/сборок/изделий и с помощью сети маяков подбираться наиболее выгодные предложения по воплощению. Это позволит опробовать механизм коммуникации между отдельными парачейнами в рамках экосистемы Polkadot, где парачейн Robonomics выступит шлюзом между идеальным миром моделей разработчиков и реальным миром кибер-физических систем. Постепенно взаимодействие этих миров поспособствует выстроить оптимальную траекторию от имеющихся возможностей к идеальному желаемому результату.
|
Loading…
Add table
Add a link
Reference in a new issue