/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "can.h" #include "spi.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_NVIC_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #define PI 3.14159265359f #define TWO_PI (2 * PI) #define MAX_CURRENT 3.0f // Max phase current #define POLE_PAIRS 3 // Motor's number of pole pairs #define TARGET_ANGLE 120.0f // Target angle in degrees #define TARGET_ANGLE_RAD (TARGET_ANGLE * PI / 180.0f) // void StartMotorControl(void) { HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3); } void StopMotorControl(void) { HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1); HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_3); } void UpdateMotor(float a, float b, float c) { uint32_t pwm_value_a = (uint32_t)((a / MAX_CURRENT) * ((float)htim1.Init.Period)); uint32_t pwm_value_b = (uint32_t)((b / MAX_CURRENT) * ((float)htim1.Init.Period)); uint32_t pwm_value_c = (uint32_t)((c / MAX_CURRENT) * ((float)htim1.Init.Period)); __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, pwm_value_a); __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, pwm_value_b); __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3, pwm_value_c); } void RunMotorToAngle(float rotorAngle) { float phaseA, phaseB, phaseC; float rotorRadians = fmod(rotorAngle, 360.0f) * (PI / 180.0f); if (rotorAngle >= TARGET_ANGLE) { // StopMotor(); // Stop the motor } phaseA = MAX_CURRENT * sinf(rotorRadians); phaseB = MAX_CURRENT * sinf(rotorRadians - TWO_PI / 3.0f); phaseC = MAX_CURRENT * sinf(rotorRadians + TWO_PI / 3.0f); // char buf[100]; // /// print all phases currents // sprintf(buf, "Phase A B C: %f %f %f\n", phaseA, phaseB, phaseC); // USART1_PutString(buf); UpdateMotor(phaseA, phaseB, phaseC); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM1_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_TIM2_Init(); MX_SPI2_Init(); MX_CAN1_Init(); MX_CAN2_Init(); MX_TIM3_Init(); MX_ADC2_Init(); /* Initialize interrupts */ MX_NVIC_Init(); /* USER CODE BEGIN 2 */ AS5045_CS_Init(); /// INIT DRV8313 HAL_GPIO_WritePin(DRV_RESET_GPIO_Port, DRV_RESET_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(DRV_SLEEP_GPIO_Port, DRV_SLEEP_Pin, GPIO_PIN_SET); HAL_Delay(100); HAL_GPIO_WritePin(EN_U_GPIO_Port, EN_U_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(EN_V_GPIO_Port, EN_V_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(EN_W_GPIO_Port, EN_W_Pin, GPIO_PIN_SET); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ float angle_values[200]; uint8_t angle_index = 0; float ADC123_ANGLE[4] = {0, 0, 0, 0}; StartMotorControl(); while (1) { // Ready to MERGE RunMotorToAngle(ADC123_ANGLE[3] + 10.0f); if (flag_10kHz == SET) { flag_10kHz = RESET; // Do something every 10 kHz // BLINK LED1 HAL_GPIO_TogglePin(LED1_GPIO_Port, LED1_Pin); uint8_t status = 0; uint16_t angle = AS5045_ReadAngle(&hspi2, &status); if (angle_index == 200) { angle_index = 0; float average = 0; for (int i = 0; i < 200; i++) { average += angle_values[i]; } average /= 200.0; ADC123_ANGLE[0] = GetCurrentFromADC(ReadADCValue(&hadc2, ADC_CHANNEL_15)); // Read ADC ADC123_ANGLE[1] = GetCurrentFromADC(ReadADCValue(&hadc2, ADC_CHANNEL_8)); // Read ADC ADC123_ANGLE[2] = GetCurrentFromADC(ReadADCValue(&hadc2, ADC_CHANNEL_9)); // Read ADC ADC123_ANGLE[3] = average; USART1_PutString("\xDE\xAD"); SendFloatsWithLL((uint8_t *)ADC123_ANGLE); USART1_PutString("\xBE\xAF"); // break; } if (status == 0) { float degrees = NormalizeToDegrees(angle); angle_values[angle_index] = degrees; angle_index++; } else { // Handle the error if (status & AS5040_DIAG_OC_FAULT) { // Offset Compensation not finished } if (status & AS5040_DIAG_CO_FAULT) { // Cordic Overflow error } if (status & AS5040_DIAG_LIN_FAULT) { // Linearity Alarm error } // StopMotorControl(); } // sprintf(buf, "Average: %f\r\n", degrees); // USART1_PutString(buf); // HAL_Delay(100); } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 180; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Activate the Over-Drive mode */ if (HAL_PWREx_EnableOverDrive() != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } /** * @brief NVIC Configuration. * @retval None */ static void MX_NVIC_Init(void) { /* TIM1_BRK_TIM9_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM1_BRK_TIM9_IRQn, 1, 0); HAL_NVIC_EnableIRQ(TIM1_BRK_TIM9_IRQn); /* TIM1_CC_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM1_CC_IRQn, 3, 0); HAL_NVIC_EnableIRQ(TIM1_CC_IRQn); /* TIM2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM2_IRQn, 4, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); /* ADC_IRQn interrupt configuration */ HAL_NVIC_SetPriority(ADC_IRQn, 2, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */