robossembler.org/docs/technologies/assembly-sequence-planning-overview.md

198 lines
22 KiB
Markdown
Raw Normal View History

---
id: ASP-overview
title: 'Планирование последовательности сборки'
---
## Введение
Сборка - узкое место в жизненном цикле многих продуктов. Предполагаемое время сборки занимает 20-50 % от общего времени производства, в то время как стоимость сборки составляет около 20-30 % от общей стоимости (Xu et al., 2012). Планирование последовательности сборки имеет решающее значение для обеспечения успеха продукта, особенно для сложных продуктов, таких как автомобили, корабли и аэрокосмическая продукция (Hou et al., 2018).
В данной статье рассмотрены актуальные исследования по автоматическому планированию последовательности сборки (Assembly Sequence Planning, ASP).
## Основные методы
На базе статьи __A review on assembly sequence generation and its automation__ - Bahubalendruni, Biswal (India) 2016
Множества и подмножества сборочных последовательностей:
* __Liaison-based__ - множества, построенные на графах(матрицах смежности для них) отношений(соединений) деталей. В вершинах графа - детали, в рёбрах - наличие соединения и иногда дополнительная информация о соединении (тип соединения и т.д.)
![](img/liaison-graph.jpg)
* __Feasible__ - геометрически доступные множества. Основаны на т.н. `feasible predicate` - условии, при котором выбранная сборка доступна в геометрическом или механическом смысле. Геометрически доступной считается подсборка, все детали которой могут быть соединены без коллизий. К каждой из подсборок liaison-множества применяется некая функция, которая отвечает в формате Да/Нет на вопрос о возможности той или иной сборки. Таким образом из liasion-матрицы формируется interference-матрица, которая отражает наличие или отсутствие коллизий между отдельными деталями.
* __Stable__ - множества устойчивых (не разваливающихся) подсборок. Могут разделяться на нестабильные, частично стабильные, полностью стабильные.
* __Optimal__ - оптимальные по отношению к целевой функции (стоимость, энергоёмкость, смены инструмента, операции). Часто инженеру нужно выбрать между несколькими допустимыми и стабильными последовательностями сборки, поэтому применяется алгоритм оптимизации. Сущестует множество типов алгоритмов оптимизации (ACO: Ant Colony Optimization, GA: Genetic Algorithm, PSO: Particle Swarm Optimization, MA: Memetic Algorithm, IA: Immune Algorithm, NN: Neural Networks, GSA: Genetic Simulated Annealing, FF: Firefly Algorithm, FW: Fireworks, MILP: Mixed Integer Linear Programming, MIP: Mixed Integer Programming), которые применяются в сочетании с различными входными данными (геометрические отношения, ограничения приоритета, информация о приспособлениях и подсборках) и целевыми функциями. Полная таблица исследований приведена в таблице 3 из работы (_Bahubalendruni, Biswal '2016_). Там же приводится статистика самых популярных:
* входных данных - `Liaison` и `Geometrical feasibility` матрицы
* алгоритмов оптимизации - Генетические алгоритмы в 40% исследований
* целевых функций - минимизация стоимости и количества изменений направлений сборки.
Отношения вложенности между указанными выше сборочными последовательностями
![](img/assembly-sequence-sets.jpg)
Современные CAD-системы позволяют получать следующие данные:
* liaison data - связи между деталями
* assembly cutsets - наборы разрезов
* questions to generate precedence relations - вопросы для создания отношений приоритета
* interference free matrix/interference data - данные о помехах
* assembly mating conditions - условия сопряжения сборки
* feasible assembly sequence(s) - геометрически допустимые сборочные последовательности
* optimal/near optimal feasible assembly sequence - оптимальные и близкие к оптимальным последовательности
Большинство методов планирования последовательностей сборки (Assembly Sequence Planning, ASP) основаны на графах. На иллюстрации ниже показаны: пример сборки (a), `blocking-граф` (b), `AND/OR-граф` (c), `liaison-граф` (d), `connector-based`. Граф Liaison часто применяется как входной в ASP-систем.
![](img/assembly_graph_types.jpg)
## Обзор актуальных исследований
### 3D Model-Based Assembly Sequence Optimization using Insertionable Properties of Parts - 2020
Kento Tariki, Takuya Kiyokawa, Gustavo Alfonso Garcia Ricardez, Jun Takamatsu, Tsukasa Ogasawara (Japan)
http://dx.doi.org/10.1109/SII46433.2020.9026210
__Исходные данные__: 3D-модель в формате STEP
__Алгоритм__: генетический алгоритм с двумя типами функций оценки (Fitness Functions). Также применяется Insertion Matrix (матрица вставки, IM), где подразделяются детали по признаку папа/мама. Insertion Matrix вычисляется из CAD-модели с помощью функций библиотеки `PythonOCC`:
* Функция `BRepAdaptor_Surface` извлекает информацию о поверхности детали и показывает её тип (плоскость, цилиндр, конус)
* Деталь классифицируется по признаку мама/папа
* В координате центра отверстия детали типа "мама" создаётся маленький куб и если какая-либо деталь имеет с ней общую точку (это вычисляется с помощью функции `BRepAlgoAPI_Common`), то она помещается в IM
* Функция `brepgprop_VolumeProperties` используется, чтобы определить, что общий объём больше нуля. И если она возвращает True, то деталь помещается в IM.
На рисунке ниже показан пример создания IM. Красная деталь типа "мама", зелёный куб находится в координате центра отверстия детали типа "мама", жёлтая деталь типа "папа".
![](img/insertion_matrix_gen.jpg)
__Полевые испытания__: использовались робот COBOTTA и ROS/MoveIt. Для примера использовалась в том числе модель из `World Robot Summit Assembly Challenge 2018`.
### Assembly Sequence Planning for Motion Planning - 2016
Weiwei Wan, Kensuke Harada, Kazuyuki Nagata
https://arxiv.org/pdf/1609.03108.pdf
__Исходные данные__: mesh-модель манипулятора, mesh-модели деталей, относительные позиции между деталями в сборке, целевая позиция сборки
__Алгоритм__: формируются все возможные подсборки и для каждой вычисляются:
* стабильность (stability)
* хватабельность (graspability) - число доступных способов захвата данным приспособлением
* собираемость (assemblability).
![](img/wan_ASP_algorithm.jpg)
Алгоритм позволяет найти некоторые оптимальные порядки и направления сборки, которые
1. Стабильны после окончания каждого этапа сборки
2. Имеют множество доступных захватов и гибки к кинематическим ограничениям роботов
3. Устойчивы к ошибкам сборки.
__Результат__:
* Порядок сборки (Assembly order): Какие детали собирать первыми
* Направление сборки (Assembly direction): Как накладывать или вставлять детали
* Доступные способы захвата (Accessible grasps): Как захватывать объекты в ходе сборки
__Полевые испытания__: собрали промышленный переключатель (switch).
### Optimal assembly sequence based on design for assembly (DFA) rules - 2020
Ine Melckenbeeckb, Sofie Burggraevea, Bart Van Donincka, Jeroen Vancraena, Albert Rosicha (EU)
__Исходные данные__: STEP-модель
__Алгоритм__: совместно применяются `AND/OR` и `liaison` графы в сочетании с практиками `Design for Assembly` (DFA).
Для измерения DFA используется метод оценки локального (_local motion_) и глобального (_global or extended motion_) движения. Локальное движение рассматривает зону физического контакта детали; глобальное движение оценивает также пересечения с деталями, не находящимися в зоне контакта, поэтому более трудоёмкое для вычислений. В алгоритме предложен метод двух-этапной оценки возможностей сборки - сначала оценивается локальное движение, а затем для направлений, в которых гарантируется локальное движение, оценивается глобальное движение.
1. Оценка локальных движений (`S-local` DFA score, %) производится с помощью `функций геометрического ядра CAD`, исходя из геометрических свойств деталей.
2. Оценка глобальных движений (`S-global` DFA score, %) производится с помощью рендеринга в `игровом движке Unity 3D`. Алгоритм получает на входе перечень возможных направлений, выявленных в ходе оценки локального движения.
Из локальной и глобальной возможности сборки выводится оценка для использования при генерации последовательности сборки.
Результатом проверки локального движения является `пространство допустимых направлений`. Объем этого пространства представляет собой количество возможных направлений сборки и, следовательно, является показателем простоты сборки. Чтобы использовать это значение в качестве оценки, нормализованный объем подается в непрерывную функцию оценки так, что невозможные сборки приравниваются к 0%, а неограниченная ничем сборка - 100%. С другой стороны, глобальная возможность сборки равна либо 0, либо 1, в которой 1 является сборкой, а 0 - нет.
Общее значение оценки `C-alg` вычисляется как `1/(S-local * S-global)`.
Порядок определения последовательности сборки:
1. STEP-файл
2. Программно генерируется `liaison`-граф, как пространство вершин разных деталей, расстояние между которыми ниже определённого значения (tolerance value)
3. Частичный AND/OR граф
4. Оценка DFA (возможен возврат к п.3). Для уменьшения количество обращений к DFA, разработаны три специальных ad-hoc правила:
* Локальная оценка возможности сборки на определённом шаге не меняется, если добавляемая к подсборке деталь или другая подсборка не соприкасаются с ней. К примеру, мы собрали две подсборки вместе, определив для них local score. Далее, если мы добавим к одной из подсборок деталь, которая не имеет соприкосновений с другой подсборкой, то на данном local score это не отразится;
* Невыполнимый этап сборки никогда не станет выполнимым путем добавления деталей в любой из узлов сборки
* (инверсия предыдущего правила) Выполнимый этап сборки никогда не станет невыполнимым при удалении деталей из любого узла сборки.
5. Последовательность сборки
Пункты 3-4 формируют т.н. алгоритм поиска оптимальной последовательности.
__Полевые испытания__: не проводились
### A System Architecture for Constraint-Based Robotic Assembly with CAD Information - 2018
Mathias Hauan Arbo, Yudha Pane†, Erwin Aertbeliën† and Wilm Decré (EU)
http://dx.doi.org/10.1109/COASE.2018.8560450
__Исходные данные__: CAD-модель с пользовательскими метаданными, в работе не было задачи автоматизации генерации последовательности сборки
__Архитектура__:
![](img/constrained_based_sequence_planner_architecture.jpg)
* `Application Layer` - для `FreeCAD` создана `Task Library`, где имплементированы классы `Положить`, `Вставить`, `Вкрутить`, которые сопоставляются рёбрам `liaison-графа`
* `Process Layer` - `Tasks` (задачи) сопоставляются с `Skills` (навыками). Навыки делятся на `Composed` и `Atomic`. В итоге каждой детали сопоставляются тип задачи из Application Layer, навык (например, `grasp_and_insert`), набор атомарных навыков (move_cartesian gripper, guarded_cartesian, cylinder_insert) и инструмент (gripper). В контексте работы Task - это задача, а Skill - это возможность производства.
* `Control Layer` - реализован на базе [eTaSL](https://etasl.pages.gitlab.kuleuven.be/intro.html) - язык спецификации задач для реактивного управления роботами + [Orocos](https://docs.orocos.org/) - [ROS-совместимый](https://github.com/orocos/rtt_ros2_integration) набор инструментов для управления роботами.
__Полевые испытания__: Собран компрессор с помощью 7-DOF KUKA LBR iiwa 14, pneumatic SCHUNK RH940 parallel gripper.
### Flexible Assembly through Integrated Assembly Sequence Planning and Grasp Planning - 2015
Ulrike Thomas, Theodoros Stouraitis, Maximo A. Roa (Germany)
__Исходные данные__: CAD-модель + база данных захватов для каждой детали в сборке
__Алгоритм__:
![](img/integrated_ASP_and_Grasp_Planning.jpg)
Сначала создаются карты для тестирования геометрической осуществимости (maps for the geometric feasibility tests) или `disassembly maps` по методу `Stereographical Projections of C-Space Obstacles` (стереографических проекций пространственных ограничений) автора U.Thomas, изложенному в [статье](https://ieeexplore.ieee.org/document/1217194) и уже применённой в исследовании 2010 года. Далее генерируются три типа графов: connectivity(liaison), force, hierarchy, из которых выводится AND/OR-граф. Далее `Grasp Planner` использует заранее подготовленную __базу данных захватов для каждой отдельной детали__ и фильтрует те вершины и рёбра `AND/OR-графа`, которые отсутствуют в доступных позициях захвата.
__Полевые испытания__: не проводились. Для симуляций применялся фреймворк `OpenRave` и конструкции из профилей.
### A novel Geometric feasibility method to perform assembly sequence planning through oblique orientations - 2021
Gulivindala Anil Kumar, M.V.A.Raju Bahubalendruni, V.S.S. Vara Prasad, Dara Ashok, K. Sankaranarayanasamy (India)
__Исходные данные__: CAD-модель
__Алгоритм__: акцент делается на методе получения матрицы геометрической доступности после liaison и stability матриц. Алгоритм называется `NASPM`:
![](img/geometric-feasibility-method-2012.jpg)
__Полевые испытания__: нет данных
### ASPW-DRL: assembly sequence planning for workpieces via a deep reinforcement learning approach - 2018
Minghui Zhao, Xian Guo, Xuebo Zhang and Yongchun Fang (China)
По мнению авторов часто используемые классы алгоритмов имеют следующие недостатки:
* Graph search - AND/OR - комбинаторный взрыв по мере увеличения количества деталей, специфичны к задаче и плохо обобщаются
* Knowledge-based - Domain/Problem Ontology - чувствительны к качеству базы знаний, плохо обобщаются
* Heuristic intelligent methods - Simulated annealing, Genetic algorithms, Neural nets - плохо обобщаются
__Исходные данные__: Подготовленная сцена в Gazebo
__Алгоритм__:
![](img/ASPW-DRL.jpg)
__Полевые испытания__: нет данных. Игрушечные модели в Gazebo
### Optimizing assembly sequence planning using precedence graph-based assembly subsets prediction method - 2019
Nan Zhang, Zhenyu Liu and Chan Qiu, Weifei Hu, Jianrong Tan (China)
В работе хорошее введение истории решения проблемы со ссылками.
__Исходные данные__: CAD-модель + `precedence graph` (граф приоритета), который как-то составляется инженером и задаёт приоритеты в порядке сборки деталей; подробности о precedence-графах изложены в работе Yong Wang, De Tian "[A weighted assembly precedence graph for assembly sequence planning](https://link.springer.com/article/10.1007/s00170-015-7565-5)"
__Алгоритм__: [Fireworks](https://en.wikipedia.org/wiki/Fireworks_algorithm)
__Полевые испытания__: нет данных. Замер эффективности алгоритма проводился по модели промышленного образца.
## Доступные программные реализации ASP
https://github.com/atulmishrachdi/AutomatedAssemblyPlanner