runtime/rbs_perception/scripts/pose_estimation.py

253 lines
8 KiB
Python
Raw Normal View History

2023-08-03 10:01:40 +00:00
#!/usr/bin/env python3
"""
detection_service
ROS 2 program for 6D Pose Estimation
@shalenikol release 0.2
2023-08-03 10:01:40 +00:00
"""
# Import the necessary libraries
import rclpy # Python library for ROS 2
from rclpy.node import Node # Handles the creation of nodes
from sensor_msgs.msg import Image # Image is the message type
from geometry_msgs.msg import Quaternion, TransformStamped
from tf2_ros import TransformBroadcaster
2023-08-03 10:01:40 +00:00
from cv_bridge import CvBridge # Package to convert between ROS and OpenCV Images
import cv2 # OpenCV library
from rbs_skill_interfaces.srv import DetectObject
from rbs_skill_interfaces.msg import ObjectInfo
#import subprocess
import os
import shutil
import json
import tempfile
from pathlib import Path
import numpy as np
from ament_index_python.packages import get_package_share_directory
# import megapose
2023-08-03 10:01:40 +00:00
from megapose.scripts.run_inference_on_example import run_inference
tf2_send_pose = True
2023-08-03 10:01:40 +00:00
"""
# encoder for numpy array
def np_encoder(object):
if isinstance(object, (np.generic, np.ndarray)):
return object.item()
"""
class ImageSubscriber(Node):
"""
Create an ImageSubscriber class, which is a subclass of the Node class.
"""
def _InitService(self):
# Initialization service data
p = os.path.join(get_package_share_directory("rbs_perception"), "config", "pose_estimation_config.json")
# load config
with open(p, "r") as f:
y = json.load(f)
for name, val in y.items():
if name == "nodeName":
self.nodeName = val
2023-08-03 10:01:40 +00:00
elif name == "topicImage":
self.topicImage = val
elif name == "topicPubName":
self.topicPubName = val
elif name == "topicSrv":
self.topicSrv = val
elif name == "tf2_send_pose":
self.tf2_send_pose = val
elif name == "camera_info":
self.K_, self.res_ = self._getCameraParam(val)
2023-08-03 10:01:40 +00:00
def _getCameraParam(self, info):
2023-08-03 10:01:40 +00:00
"""
Returns the intrinsic matrix and resolution from the provided camera info.
2023-08-03 10:01:40 +00:00
"""
intrinsic_matrix = [
[info["fx"], 0.0, info["width"] / 2.0],
[0.0, info["fy"], info["height"] / 2.0],
[0.0, 0.0, 1.0]
]
resolution = [info["height"], info["width"]]
2023-08-03 10:01:40 +00:00
return intrinsic_matrix, resolution
def __init__(self):
"""
Class constructor to set up the node
"""
self.nodeName = "image_sub2"
self.topicImage = "/outer_rgbd_camera/image"
self.topicPubName = self.nodeName + "/pose6D_images"
self.topicSrv = self.nodeName + "/detect6Dpose"
2023-08-03 10:01:40 +00:00
self._InitService()
self.tmpdir = tempfile.gettempdir()
self.mytemppath = Path(self.tmpdir) / "rbs_per"
self.mytemppath.mkdir(exist_ok=True)
#os.environ["MEGAPOSE_DATA_DIR"] = str(self.mytemppath)
# Initiate the Node class's constructor and give it a name
super().__init__(self.nodeName)
# Initialize the transform broadcaster
self.tf_broadcaster = TransformBroadcaster(self)
2023-08-03 10:01:40 +00:00
self.subscription = None
self.objName = ""
self.objMeshFile = ""
self.objPath = ""
# Used to convert between ROS and OpenCV images
self.br = CvBridge()
self.cnt = 0
#self.get_logger().info(f"__init__ : __file__ = {__file__} tmpdir = {self.tmpdir}")
self.service = self.create_service(DetectObject, self.topicSrv, self.service_callback)
def service_callback(self, request, response):
self.get_logger().info(f"Incoming request for pose estimation ObjectInfo(name: {request.object.name}, mesh_path: {request.object.mesh_path})")
2023-08-03 10:01:40 +00:00
if not os.path.isfile(request.object.mesh_path):
response.call_status = False
response.error_msg = f"{request.object.mesh_path}: no such file"
return response
if request.object.id == -1:
self.subscription = None # ? сброс подпискиpython -m megapose.scripts.download --example_data
2023-08-03 10:01:40 +00:00
response.call_status = True
return response
if self.subscription == None:
self.objName = request.object.name
self.objMeshFile = request.object.mesh_path
self.objPath = self.mytemppath / "examples"
self.objPath.mkdir(exist_ok=True)
self.objPath /= self.objName
self.objPath.mkdir(exist_ok=True)
tPath = self.objPath / "inputs"
tPath.mkdir(exist_ok=True)
#{"label": "fork", "bbox_modal": [329, 189, 430, 270]}
output_fn = tPath / "object_data.json"
output_json_dict = {
"label": self.objName,
"bbox_modal": [2,2,self.res_[1]-4,self.res_[0]-4]
2023-08-03 10:01:40 +00:00
}
data = []
data.append(output_json_dict)
output_fn.write_text(json.dumps(data))
tPath = self.objPath / "meshes"
tPath.mkdir(exist_ok=True)
tPath /= self.objName
tPath.mkdir(exist_ok=True)
shutil.copyfile(self.objMeshFile, str(tPath / (self.objName+".ply")))
#{"K": [[25.0, 0.0, 8.65], [0.0, 25.0, 6.5], [0.0, 0.0, 1.0]], "resolution": [480, 640]}
output_fn = self.objPath / "camera_data.json"
output_json_dict = {
"K": self.K_,
"resolution": self.res_
}
data = []
data.append(output_json_dict)
output_fn.write_text(json.dumps(output_json_dict))
2023-08-03 10:01:40 +00:00
# Create the subscriber. This subscriber will receive an Image from the video_frames topic. The queue size is 3 messages.
self.subscription = self.create_subscription(Image, self.topicImage, self.listener_callback, 3)
# Create the publisher. This publisher will publish an Quaternion to the 'pose6D_<obj>' topic. The queue size is 10 messages.
self.publisher = self.create_publisher(Quaternion, "pose6D_"+self.objName, 10)
response.call_status = True
else:
response.call_status = True
return response
def load_result(self, example_dir: Path, json_name = "object_data.json"):
f = example_dir / "outputs" / json_name
if os.path.isfile(f):
data = f.read_text()
else:
data = "No result file: '" + str(f) + "'"
return data
def tf_obj_pose(self,pose):
"""
Передача позиции объекта в tf2
"""
t = TransformStamped()
# assign pose to corresponding tf variables
t.header.stamp = self.get_clock().now().to_msg()
t.header.frame_id = 'world'
t.child_frame_id = self.objName
# coordinates
tr = pose[1]
t.transform.translation.x = tr[0]
t.transform.translation.y = tr[1]
t.transform.translation.z = tr[2]
# rotation
q = pose[0]
t.transform.rotation.x = q[1] # 0
t.transform.rotation.y = q[2] # 1
t.transform.rotation.z = q[3] # 2
t.transform.rotation.w = q[0] # 3
# Send the transformation
self.tf_broadcaster.sendTransform(t)
2023-08-03 10:01:40 +00:00
def listener_callback(self, data):
"""
Callback function.
"""
# Display the message on the console
self.get_logger().info("Receiving video frame")
# Convert ROS Image message to OpenCV image
current_frame = self.br.imgmsg_to_cv2(data)
# Save image for Megapose
cv2.imwrite(str(self.objPath / "image_rgb.png"), current_frame)
self.cnt += 1
# 6D pose estimation
self.get_logger().info(f"megapose: begin {self.cnt}")
print(self.objPath)
2023-08-03 10:01:40 +00:00
run_inference(self.objPath,"megapose-1.0-RGB-multi-hypothesis")
# опубликуем результат оценки позы
data = self.load_result(self.objPath)
if data[0] == "[":
y = json.loads(data)[0]
pose = y["TWO"]
2023-08-03 10:01:40 +00:00
quat = pose[0]
#pose[1] - 3D перемещение
self.publisher.publish(Quaternion(x=quat[1],y=quat[2],z=quat[3],w=quat[0]))
if tf2_send_pose:
self.tf_obj_pose(pose)
2023-08-03 10:01:40 +00:00
self.get_logger().info(f"megapose: end {self.cnt}")
cv2.waitKey(1)
def main(args=None):
# Initialize the rclpy library
rclpy.init(args=args)
# Create the node
image_subscriber = ImageSubscriber()
# Spin the node so the callback function is called.
rclpy.spin(image_subscriber)
# Destroy the node explicitly
# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
image_subscriber.destroy_node()
# Shutdown the ROS client library for Python
rclpy.shutdown()
if __name__ == '__main__':
main()