rename folder for sync

This commit is contained in:
Ilya Uraev 2022-01-17 02:49:39 +04:00
parent b9d3faa297
commit 62bd328288
19 changed files with 13 additions and 13 deletions

View file

@ -0,0 +1,501 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2013, SRI International
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of SRI International nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Sachin Chitta, Dave Coleman, Mike Lautman */
#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/planning_scene_interface/planning_scene_interface.h>
#include <moveit_msgs/msg/display_robot_state.hpp>
#include <moveit_msgs/msg/display_trajectory.hpp>
#include <moveit_msgs/msg/attached_collision_object.hpp>
#include <moveit_msgs/msg/collision_object.hpp>
#include <moveit_visual_tools/moveit_visual_tools.h>
// All source files that use ROS logging should define a file-specific
// static const rclcpp::Logger named LOGGER, located at the top of the file
// and inside the namespace with the narrowest scope (if there is one)
static const rclcpp::Logger LOGGER = rclcpp::get_logger("move_group_demo");
int main(int argc, char** argv)
{
rclcpp::init(argc, argv);
rclcpp::NodeOptions node_options;
node_options.automatically_declare_parameters_from_overrides(true);
auto move_group_node = rclcpp::Node::make_shared("move_group_interface_tutorial", node_options);
// We spin up a SingleThreadedExecutor for the current state monitor to get information
// about the robot's state.
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(move_group_node);
std::thread([&executor]() { executor.spin(); }).detach();
// BEGIN_TUTORIAL
//
// Setup
// ^^^^^
//
// MoveIt operates on sets of joints called "planning groups" and stores them in an object called
// the `JointModelGroup`. Throughout MoveIt, the terms "planning group" and "joint model group"
// are used interchangably.
static const std::string PLANNING_GROUP = "rasmt_arm_group";
// The
// :moveit_codedir:`MoveGroupInterface<moveit_ros/planning_interface/move_group_interface/include/moveit/move_group_interface/move_group_interface.h>`
// class can be easily set up using just the name of the planning group you would like to control and plan for.
moveit::planning_interface::MoveGroupInterface move_group(move_group_node, PLANNING_GROUP);
// We will use the
// :moveit_codedir:`PlanningSceneInterface<moveit_ros/planning_interface/planning_scene_interface/include/moveit/planning_scene_interface/planning_scene_interface.h>`
// class to add and remove collision objects in our "virtual world" scene
moveit::planning_interface::PlanningSceneInterface planning_scene_interface;
// Raw pointers are frequently used to refer to the planning group for improved performance.
const moveit::core::JointModelGroup* joint_model_group =
move_group.getCurrentState()->getJointModelGroup(PLANNING_GROUP);
// Visualization
// ^^^^^^^^^^^^^
namespace rvt = rviz_visual_tools;
moveit_visual_tools::MoveItVisualTools visual_tools(move_group_node, "base", "move_group_tutorial",
move_group.getRobotModel());
visual_tools.deleteAllMarkers();
/* Remote control is an introspection tool that allows users to step through a high level script */
/* via buttons and keyboard shortcuts in RViz */
visual_tools.loadRemoteControl();
// RViz provides many types of markers, in this demo we will use text, cylinders, and spheres
Eigen::Isometry3d text_pose = Eigen::Isometry3d::Identity();
text_pose.translation().z() = 1.0;
visual_tools.publishText(text_pose, "MoveGroupInterface_Demo", rvt::WHITE, rvt::XLARGE);
// Batch publishing is used to reduce the number of messages being sent to RViz for large visualizations
visual_tools.trigger();
// Getting Basic Information
// ^^^^^^^^^^^^^^^^^^^^^^^^^
//
// We can print the name of the reference frame for this robot.
RCLCPP_INFO(LOGGER, "Planning frame: %s", move_group.getPlanningFrame().c_str());
// We can also print the name of the end-effector link for this group.
RCLCPP_INFO(LOGGER, "End effector link: %s", move_group.getEndEffectorLink().c_str());
// We can get a list of all the groups in the robot:
RCLCPP_INFO(LOGGER, "Available Planning Groups:");
std::copy(move_group.getJointModelGroupNames().begin(), move_group.getJointModelGroupNames().end(),
std::ostream_iterator<std::string>(std::cout, ", "));
// Start the demo
// ^^^^^^^^^^^^^^^^^^^^^^^^^
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to start the demo");
// .. _move_group_interface-planning-to-pose-goal:
//
// Planning to a Pose goal
// ^^^^^^^^^^^^^^^^^^^^^^^
// We can plan a motion for this group to a desired pose for the
// end-effector.
geometry_msgs::msg::Pose target_pose1;
target_pose1.orientation.w = 1.0;
target_pose1.position.x = 0.28;
target_pose1.position.y = -0.2;
target_pose1.position.z = 0.5;
move_group.setPoseTarget(target_pose1);
// Now, we call the planner to compute the plan and visualize it.
// Note that we are just planning, not asking move_group
// to actually move the robot.
moveit::planning_interface::MoveGroupInterface::Plan my_plan;
bool success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
RCLCPP_INFO(LOGGER, "Visualizing plan 1 (pose goal) %s", success ? "" : "FAILED");
// Visualizing plans
// ^^^^^^^^^^^^^^^^^
// We can also visualize the plan as a line with markers in RViz.
RCLCPP_INFO(LOGGER, "Visualizing plan 1 as trajectory line");
visual_tools.publishAxisLabeled(target_pose1, "pose1");
visual_tools.publishText(text_pose, "Pose_Goal", rvt::WHITE, rvt::XLARGE);
visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
// Moving to a pose goal
// ^^^^^^^^^^^^^^^^^^^^^
//
// Moving to a pose goal is similar to the step above
// except we now use the ``move()`` function. Note that
// the pose goal we had set earlier is still active
// and so the robot will try to move to that goal. We will
// not use that function in this tutorial since it is
// a blocking function and requires a controller to be active
// and report success on execution of a trajectory.
/* Uncomment below line when working with a real robot */
/* move_group.move(); */
// Planning to a joint-space goal
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// Let's set a joint space goal and move towards it. This will replace the
// pose target we set above.
//
// To start, we'll create an pointer that references the current robot's state.
// RobotState is the object that contains all the current position/velocity/acceleration data.
moveit::core::RobotStatePtr current_state = move_group.getCurrentState(10);
//
// Next get the current set of joint values for the group.
std::vector<double> joint_group_positions;
current_state->copyJointGroupPositions(joint_model_group, joint_group_positions);
// Now, let's modify one of the joints, plan to the new joint space goal, and visualize the plan.
joint_group_positions[0] = -1.0; // radians
move_group.setJointValueTarget(joint_group_positions);
// We lower the allowed maximum velocity and acceleration to 5% of their maximum.
// The default values are 10% (0.1).
// Set your preferred defaults in the joint_limits.yaml file of your robot's moveit_config
// or set explicit factors in your code if you need your robot to move faster.
move_group.setMaxVelocityScalingFactor(0.05);
move_group.setMaxAccelerationScalingFactor(0.05);
success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
RCLCPP_INFO(LOGGER, "Visualizing plan 2 (joint space goal) %s", success ? "" : "FAILED");
// Visualize the plan in RViz:
visual_tools.deleteAllMarkers();
visual_tools.publishText(text_pose, "Joint_Space_Goal", rvt::WHITE, rvt::XLARGE);
visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
// Planning with Path Constraints
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// Path constraints can easily be specified for a link on the robot.
// Let's specify a path constraint and a pose goal for our group.
// First define the path constraint.
moveit_msgs::msg::OrientationConstraint ocm;
ocm.link_name = "tool0";
ocm.header.frame_id = "base";
ocm.orientation.w = 1.0;
ocm.absolute_x_axis_tolerance = 0.1;
ocm.absolute_y_axis_tolerance = 0.1;
ocm.absolute_z_axis_tolerance = 0.1;
ocm.weight = 1.0;
// Now, set it as the path constraint for the group.
moveit_msgs::msg::Constraints test_constraints;
test_constraints.orientation_constraints.push_back(ocm);
move_group.setPathConstraints(test_constraints);
// Enforce Planning in Joint Space
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// Depending on the planning problem MoveIt chooses between
// ``joint space`` and ``cartesian space`` for problem representation.
// Setting the group parameter ``enforce_joint_model_state_space:true`` in
// the ompl_planning.yaml file enforces the use of ``joint space`` for all plans.
//
// By default, planning requests with orientation path constraints
// are sampled in ``cartesian space`` so that invoking IK serves as a
// generative sampler.
//
// By enforcing ``joint space``, the planning process will use rejection
// sampling to find valid requests. Please note that this might
// increase planning time considerably.
//
// We will reuse the old goal that we had and plan to it.
// Note that this will only work if the current state already
// satisfies the path constraints. So we need to set the start
// state to a new pose.
moveit::core::RobotState start_state(*move_group.getCurrentState());
geometry_msgs::msg::Pose start_pose2;
start_pose2.orientation.w = 1.0;
start_pose2.position.x = 0.55;
start_pose2.position.y = -0.05;
start_pose2.position.z = 0.8;
start_state.setFromIK(joint_model_group, start_pose2);
move_group.setStartState(start_state);
// Now, we will plan to the earlier pose target from the new
// start state that we just created.
move_group.setPoseTarget(target_pose1);
// Planning with constraints can be slow because every sample must call an inverse kinematics solver.
// Let's increase the planning time from the default 5 seconds to be sure the planner has enough time to succeed.
move_group.setPlanningTime(10.0);
success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
RCLCPP_INFO(LOGGER, "Visualizing plan 3 (constraints) %s", success ? "" : "FAILED");
// Visualize the plan in RViz:
visual_tools.deleteAllMarkers();
visual_tools.publishAxisLabeled(start_pose2, "start");
visual_tools.publishAxisLabeled(target_pose1, "goal");
visual_tools.publishText(text_pose, "Constrained_Goal", rvt::WHITE, rvt::XLARGE);
visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
// When done with the path constraint, be sure to clear it.
move_group.clearPathConstraints();
// Cartesian Paths
// ^^^^^^^^^^^^^^^
// You can plan a Cartesian path directly by specifying a list of waypoints
// for the end-effector to go through. Note that we are starting
// from the new start state above. The initial pose (start state) does not
// need to be added to the waypoint list but adding it can help with visualizations
std::vector<geometry_msgs::msg::Pose> waypoints;
waypoints.push_back(start_pose2);
geometry_msgs::msg::Pose target_pose3 = start_pose2;
target_pose3.position.z -= 0.2;
waypoints.push_back(target_pose3); // down
target_pose3.position.y -= 0.2;
waypoints.push_back(target_pose3); // right
target_pose3.position.z += 0.2;
target_pose3.position.y += 0.2;
target_pose3.position.x -= 0.2;
waypoints.push_back(target_pose3); // up and left
// We want the Cartesian path to be interpolated at a resolution of 1 cm
// which is why we will specify 0.01 as the max step in Cartesian
// translation. We will specify the jump threshold as 0.0, effectively disabling it.
// Warning - disabling the jump threshold while operating real hardware can cause
// large unpredictable motions of redundant joints and could be a safety issue
moveit_msgs::msg::RobotTrajectory trajectory;
const double jump_threshold = 0.0;
const double eef_step = 0.01;
double fraction = move_group.computeCartesianPath(waypoints, eef_step, jump_threshold, trajectory);
RCLCPP_INFO(LOGGER, "Visualizing plan 4 (Cartesian path) (%.2f%% acheived)", fraction * 100.0);
// Visualize the plan in RViz
visual_tools.deleteAllMarkers();
visual_tools.publishText(text_pose, "Cartesian_Path", rvt::WHITE, rvt::XLARGE);
visual_tools.publishPath(waypoints, rvt::LIME_GREEN, rvt::SMALL);
for (std::size_t i = 0; i < waypoints.size(); ++i)
visual_tools.publishAxisLabeled(waypoints[i], "pt" + std::to_string(i), rvt::SMALL);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
// Cartesian motions should often be slow, e.g. when approaching objects. The speed of Cartesian
// plans cannot currently be set through the maxVelocityScalingFactor, but requires you to time
// the trajectory manually, as described `here <https://groups.google.com/forum/#!topic/moveit-users/MOoFxy2exT4>`_.
// Pull requests are welcome.
//
// You can execute a trajectory like this.
/* move_group.execute(trajectory); */
// Adding objects to the environment
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// First, let's plan to another simple goal with no objects in the way.
move_group.setStartState(*move_group.getCurrentState());
geometry_msgs::msg::Pose another_pose;
another_pose.orientation.w = 0;
another_pose.orientation.x = -1.0;
another_pose.position.x = 0.7;
another_pose.position.y = 0.0;
another_pose.position.z = 0.59;
move_group.setPoseTarget(another_pose);
success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
RCLCPP_INFO(LOGGER, "Visualizing plan 5 (with no obstacles) %s", success ? "" : "FAILED");
visual_tools.deleteAllMarkers();
visual_tools.publishText(text_pose, "Clear_Goal", rvt::WHITE, rvt::XLARGE);
visual_tools.publishAxisLabeled(another_pose, "goal");
visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
// The result may look like this:
//
// .. image:: ./move_group_interface_tutorial_clear_path.gif
// :alt: animation showing the arm moving relatively straight toward the goal
//
// Now, let's define a collision object ROS message for the robot to avoid.
moveit_msgs::msg::CollisionObject collision_object;
collision_object.header.frame_id = move_group.getPlanningFrame();
// The id of the object is used to identify it.
collision_object.id = "box1";
// Define a box to add to the world.
shape_msgs::msg::SolidPrimitive primitive;
primitive.type = primitive.BOX;
primitive.dimensions.resize(3);
primitive.dimensions[primitive.BOX_X] = 0.1;
primitive.dimensions[primitive.BOX_Y] = 1.5;
primitive.dimensions[primitive.BOX_Z] = 0.5;
// Define a pose for the box (specified relative to frame_id).
geometry_msgs::msg::Pose box_pose;
box_pose.orientation.w = 1.0;
box_pose.position.x = 0.48;
box_pose.position.y = 0.0;
box_pose.position.z = 0.25;
collision_object.primitives.push_back(primitive);
collision_object.primitive_poses.push_back(box_pose);
collision_object.operation = collision_object.ADD;
std::vector<moveit_msgs::msg::CollisionObject> collision_objects;
collision_objects.push_back(collision_object);
// Now, let's add the collision object into the world
// (using a vector that could contain additional objects)
RCLCPP_INFO(LOGGER, "Add an object into the world");
planning_scene_interface.addCollisionObjects(collision_objects);
// Show text in RViz of status and wait for MoveGroup to receive and process the collision object message
visual_tools.publishText(text_pose, "Add_object", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to once the collision object appears in RViz");
// Now, when we plan a trajectory it will avoid the obstacle.
success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
RCLCPP_INFO(LOGGER, "Visualizing plan 6 (pose goal move around cuboid) %s", success ? "" : "FAILED");
visual_tools.publishText(text_pose, "Obstacle_Goal", rvt::WHITE, rvt::XLARGE);
visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window once the plan is complete");
// The result may look like this:
//
// .. image:: ./move_group_interface_tutorial_avoid_path.gif
// :alt: animation showing the arm moving avoiding the new obstacle
//
// Attaching objects to the robot
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// You can attach an object to the robot, so that it moves with the robot geometry.
// This simulates picking up the object for the purpose of manipulating it.
// The motion planning should avoid collisions between objects as well.
moveit_msgs::msg::CollisionObject object_to_attach;
object_to_attach.id = "cylinder1";
shape_msgs::msg::SolidPrimitive cylinder_primitive;
cylinder_primitive.type = primitive.CYLINDER;
cylinder_primitive.dimensions.resize(2);
cylinder_primitive.dimensions[primitive.CYLINDER_HEIGHT] = 0.20;
cylinder_primitive.dimensions[primitive.CYLINDER_RADIUS] = 0.04;
// We define the frame/pose for this cylinder so that it appears in the gripper.
object_to_attach.header.frame_id = move_group.getEndEffectorLink();
geometry_msgs::msg::Pose grab_pose;
grab_pose.orientation.w = 1.0;
grab_pose.position.z = 0.2;
// First, we add the object to the world (without using a vector).
object_to_attach.primitives.push_back(cylinder_primitive);
object_to_attach.primitive_poses.push_back(grab_pose);
object_to_attach.operation = object_to_attach.ADD;
planning_scene_interface.applyCollisionObject(object_to_attach);
// Then, we "attach" the object to the robot. It uses the frame_id to determine which robot link it is attached to.
// We also need to tell MoveIt that the object is allowed to be in collision with the finger links of the gripper.
// You could also use applyAttachedCollisionObject to attach an object to the robot directly.
RCLCPP_INFO(LOGGER, "Attach the object to the robot");
std::vector<std::string> touch_links;
touch_links.push_back("panda_rightfinger");
touch_links.push_back("panda_leftfinger");
move_group.attachObject(object_to_attach.id, "panda_hand", touch_links);
visual_tools.publishText(text_pose, "Object_attached_to_robot", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
/* Wait for MoveGroup to receive and process the attached collision object message */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window once the new object is attached to the robot");
// Replan, but now with the object in hand.
move_group.setStartStateToCurrentState();
success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
RCLCPP_INFO(LOGGER, "Visualizing plan 7 (move around cuboid with cylinder) %s", success ? "" : "FAILED");
visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
visual_tools.trigger();
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window once the plan is complete");
// The result may look something like this:
//
// .. image:: ./move_group_interface_tutorial_attached_object.gif
// :alt: animation showing the arm moving differently once the object is attached
//
// Detaching and Removing Objects
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//
// Now, let's detach the cylinder from the robot's gripper.
RCLCPP_INFO(LOGGER, "Detach the object from the robot");
move_group.detachObject(object_to_attach.id);
// Show text in RViz of status
visual_tools.deleteAllMarkers();
visual_tools.publishText(text_pose, "Object_detached_from_robot", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
/* Wait for MoveGroup to receive and process the attached collision object message */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window once the new object is detached from the robot");
// Now, let's remove the objects from the world.
RCLCPP_INFO(LOGGER, "Remove the objects from the world");
std::vector<std::string> object_ids;
object_ids.push_back(collision_object.id);
object_ids.push_back(object_to_attach.id);
planning_scene_interface.removeCollisionObjects(object_ids);
// Show text in RViz of status
visual_tools.publishText(text_pose, "Objects_removed", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
/* Wait for MoveGroup to receive and process the attached collision object message */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to once the collision object disapears");
// END_TUTORIAL
visual_tools.deleteAllMarkers();
visual_tools.trigger();
rclcpp::shutdown();
return 0;
}

View file

@ -0,0 +1,100 @@
#include <thread>
#include <rclcpp/rclcpp.hpp>
#include <moveit/moveit_cpp/moveit_cpp.h>
#include <moveit/moveit_cpp/planning_component.h>
#include <moveit/robot_state/conversions.h>
#include <moveit_msgs/msg/display_robot_state.hpp>
#include <trajectory_msgs/msg/joint_trajectory.hpp>
static const rclcpp::Logger LOGGER = rclcpp::get_logger("moveit_cpp_demo");
class MoveItCppDemo
{
public:
MoveItCppDemo(const rclcpp::Node::SharedPtr& node)
: node_(node)
, robot_state_publisher_(node_->create_publisher<moveit_msgs::msg::DisplayRobotState>("display_robot_state", 1))
{
}
void run()
{
RCLCPP_INFO(LOGGER, "Initialize MoveItCpp");
moveit_cpp_ = std::make_shared<moveit_cpp::MoveItCpp>(node_);
moveit_cpp_->getPlanningSceneMonitor()->providePlanningSceneService(); // let RViz display query PlanningScene
moveit_cpp_->getPlanningSceneMonitor()->setPlanningScenePublishingFrequency(100);
RCLCPP_INFO(LOGGER, "Initialize PlanningComponent");
moveit_cpp::PlanningComponent arm("panda_arm", moveit_cpp_);
// A little delay before running the plan
rclcpp::sleep_for(std::chrono::seconds(3));
// Create collision object, planning shouldn't be too easy
moveit_msgs::msg::CollisionObject collision_object;
collision_object.header.frame_id = "panda_link0";
collision_object.id = "box";
shape_msgs::msg::SolidPrimitive box;
box.type = box.BOX;
box.dimensions = { 0.1, 0.4, 0.1 };
geometry_msgs::msg::Pose box_pose;
box_pose.position.x = 0.4;
box_pose.position.y = 0.0;
box_pose.position.z = 1.0;
collision_object.primitives.push_back(box);
collision_object.primitive_poses.push_back(box_pose);
collision_object.operation = collision_object.ADD;
// Add object to planning scene
{ // Lock PlanningScene
planning_scene_monitor::LockedPlanningSceneRW scene(moveit_cpp_->getPlanningSceneMonitor());
scene->processCollisionObjectMsg(collision_object);
} // Unlock PlanningScene
// Set joint state goal
RCLCPP_INFO(LOGGER, "Set goal");
arm.setGoal("pose1");
// Run actual plan
RCLCPP_INFO(LOGGER, "Plan to goal");
const auto plan_solution = arm.plan();
if (plan_solution)
{
RCLCPP_INFO(LOGGER, "arm.execute()");
arm.execute();
}
}
private:
rclcpp::Node::SharedPtr node_;
rclcpp::Publisher<moveit_msgs::msg::DisplayRobotState>::SharedPtr robot_state_publisher_;
moveit_cpp::MoveItCppPtr moveit_cpp_;
};
int main(int argc, char** argv)
{
RCLCPP_INFO(LOGGER, "Initialize node");
rclcpp::init(argc, argv);
rclcpp::NodeOptions node_options;
// This enables loading undeclared parameters
// best practice would be to declare parameters in the corresponding classes
// and provide descriptions about expected use
node_options.automatically_declare_parameters_from_overrides(true);
rclcpp::Node::SharedPtr node = rclcpp::Node::make_shared("run_moveit_cpp", "", node_options);
MoveItCppDemo demo(node);
std::thread run_demo([&demo]() {
// Let RViz initialize before running demo
// TODO(henningkayser): use lifecycle events to launch node
rclcpp::sleep_for(std::chrono::seconds(5));
demo.run();
});
rclcpp::spin(node);
run_demo.join();
return 0;
}