258 lines
No EOL
9.5 KiB
Python
Executable file
258 lines
No EOL
9.5 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
"""
|
|
object_detection_lifecycle_node
|
|
ROS 2 program for Object Detection
|
|
|
|
@shalenikol release 0.1
|
|
"""
|
|
|
|
from typing import Optional
|
|
import os
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import rclpy
|
|
from rclpy.lifecycle import Node
|
|
from rclpy.lifecycle import Publisher
|
|
from rclpy.lifecycle import State
|
|
from rclpy.lifecycle import TransitionCallbackReturn
|
|
from rclpy.timer import Timer
|
|
|
|
from ament_index_python.packages import get_package_share_directory
|
|
from sensor_msgs.msg import Image
|
|
from rbs_skill_interfaces.msg import BoundBox
|
|
|
|
from cv_bridge import CvBridge # Package to convert between ROS and OpenCV Images
|
|
#import cv2 # OpenCV library
|
|
|
|
class Detection(Node):
|
|
"""Our lifecycle node."""
|
|
def _InitService(self):
|
|
# Initialization service data
|
|
p = os.path.join(get_package_share_directory("rbs_perception"), "config", "detection_config.json")
|
|
# load config
|
|
with open(p, "r") as f:
|
|
y = json.load(f)
|
|
|
|
for name, val in y.items():
|
|
if name == "nodeName":
|
|
self.nodeName = val
|
|
elif name == "cameraLink":
|
|
self.camera_link = val
|
|
elif name == "topicImage":
|
|
self.topicImage = val
|
|
elif name == "publishDelay":
|
|
self.publishDelay = val
|
|
elif name == "topicSrv":
|
|
self.topicSrv = val
|
|
|
|
def __init__(self, node_name, **kwargs):
|
|
"""Construct the node."""
|
|
self._count: int = 0
|
|
self._pub: Optional[Publisher] = None
|
|
self._timer: Optional[Timer] = None
|
|
self._image_cnt: int = 0
|
|
self._sub = None
|
|
self._is_image_mode = False
|
|
self.yolov8_weights_file = ""
|
|
self.model = None
|
|
|
|
self.nodeName = node_name
|
|
self.camera_link = "outer_rgbd_camera"
|
|
self.topicImage = "/outer_rgb_camera/image"
|
|
self.publishDelay = 0.33
|
|
self.topicSrv = self.nodeName + "/object_detect"
|
|
self.topicDetectImage = self.nodeName + "/detect_image"
|
|
self._InitService()
|
|
|
|
# for other nodes
|
|
kwargs["allow_undeclared_parameters"] = True
|
|
kwargs["automatically_declare_parameters_from_overrides"] = True
|
|
super().__init__(self.nodeName, **kwargs)
|
|
self.declare_parameter("setting_path", rclpy.Parameter.Type.STRING)
|
|
|
|
# Used to convert between ROS and OpenCV images
|
|
self.br = CvBridge()
|
|
|
|
self.objName = ""
|
|
self.image_det = []
|
|
self.bbox_res = None
|
|
|
|
def on_configure(self, state: State) -> TransitionCallbackReturn:
|
|
"""
|
|
Configure the node, after a configuring transition is requested.
|
|
|
|
:return: The state machine either invokes a transition to the "inactive" state or stays
|
|
in "unconfigured" depending on the return value.
|
|
TransitionCallbackReturn.SUCCESS transitions to "inactive".
|
|
TransitionCallbackReturn.FAILURE transitions to "unconfigured".
|
|
TransitionCallbackReturn.ERROR or any uncaught exceptions to "errorprocessing"
|
|
"""
|
|
str_param = self.get_parameter("setting_path").get_parameter_value().string_value
|
|
if str_param[0] == "!": # filename json
|
|
json_file = str_param[1:]
|
|
if not os.path.isfile(json_file):
|
|
self.get_logger().info("not JSon '"+ json_file +"'")
|
|
return TransitionCallbackReturn.FAILURE
|
|
str_param = Path(json_file).read_text()
|
|
try:
|
|
y = json.loads(str_param)
|
|
except json.JSONDecodeError as e:
|
|
self.get_logger().info(f"JSon error: {e}")
|
|
return TransitionCallbackReturn.FAILURE
|
|
if "yolov8_weights_file" in y:
|
|
self.yolov8_weights_file = y["yolov8_weights_file"]
|
|
if "objName" in y:
|
|
self.objName = y["objName"]
|
|
if "mode" in y:
|
|
self._is_image_mode = (y["mode"] == "image_res")
|
|
else:
|
|
self.yolov8_weights_file = str_param
|
|
|
|
if not os.path.isfile(self.yolov8_weights_file):
|
|
self.get_logger().info(f"Parameter 'yolov8_weights_file' not valid: {self.yolov8_weights_file}")
|
|
return TransitionCallbackReturn.FAILURE
|
|
|
|
# Create the publisher.
|
|
if self._is_image_mode:
|
|
self._pub = self.create_lifecycle_publisher(Image, self.topicDetectImage, 3)
|
|
else:
|
|
self._pub = self.create_lifecycle_publisher(BoundBox, self.topicSrv, 10)
|
|
|
|
self._timer = self.create_timer(self.publishDelay, self.publish)
|
|
|
|
from ultralytics import YOLO
|
|
self.model = YOLO(self.yolov8_weights_file)
|
|
|
|
self.get_logger().info("on_configure() is called.")
|
|
return TransitionCallbackReturn.SUCCESS
|
|
|
|
def on_activate(self, state: State) -> TransitionCallbackReturn:
|
|
# Log
|
|
self.get_logger().info('on_activate() is called.')
|
|
# Create the main subscriber.
|
|
self._sub = self.create_subscription(Image, self.topicImage, self.listener_callback, 3)
|
|
return super().on_activate(state)
|
|
|
|
def on_deactivate(self, state: State) -> TransitionCallbackReturn:
|
|
# Log
|
|
self.get_logger().info('on_deactivate() is called.')
|
|
# Destroy the main subscriber.
|
|
self.destroy_subscription(self._sub)
|
|
return super().on_deactivate(state)
|
|
|
|
def on_cleanup(self, state: State) -> TransitionCallbackReturn:
|
|
"""
|
|
Cleanup the node.
|
|
|
|
:return: The state machine either invokes a transition to the "unconfigured" state or stays
|
|
in "inactive" depending on the return value.
|
|
TransitionCallbackReturn.SUCCESS transitions to "unconfigured".
|
|
TransitionCallbackReturn.FAILURE transitions to "inactive".
|
|
TransitionCallbackReturn.ERROR or any uncaught exceptions to "errorprocessing"
|
|
"""
|
|
# очистим параметры
|
|
node_param = rclpy.parameter.Parameter("setting_path", rclpy.Parameter.Type.STRING, "")
|
|
all_node_param = [node_param]
|
|
self.set_parameters(all_node_param)
|
|
|
|
self._is_image_mode = False
|
|
self.image_det = []
|
|
self.bbox_res = None
|
|
|
|
self.destroy_timer(self._timer)
|
|
self.destroy_publisher(self._pub)
|
|
self.destroy_subscription(self._sub)
|
|
|
|
self.get_logger().info('on_cleanup() is called.')
|
|
return TransitionCallbackReturn.SUCCESS
|
|
|
|
def on_shutdown(self, state: State) -> TransitionCallbackReturn:
|
|
"""
|
|
Shutdown the node.
|
|
|
|
:return: The state machine either invokes a transition to the "finalized" state or stays
|
|
in the current state depending on the return value.
|
|
TransitionCallbackReturn.SUCCESS transitions to "unconfigured".
|
|
TransitionCallbackReturn.FAILURE transitions to "inactive".
|
|
TransitionCallbackReturn.ERROR or any uncaught exceptions to "errorprocessing"
|
|
"""
|
|
self.destroy_timer(self._timer)
|
|
self.destroy_publisher(self._pub)
|
|
self.destroy_subscription(self._sub)
|
|
|
|
self.get_logger().info('on_shutdown() is called.')
|
|
return TransitionCallbackReturn.SUCCESS
|
|
|
|
def publish(self):
|
|
"""Publish a new message when enabled."""
|
|
self._count += 1
|
|
|
|
if self._pub is not None and self._pub.is_activated:
|
|
# Publish result
|
|
if self._is_image_mode:
|
|
if len(self.image_det) == 0:
|
|
return
|
|
# The 'cv2_to_imgmsg' method converts an OpenCV image to a ROS 2 image message
|
|
msg = self.br.cv2_to_imgmsg(self.image_det, encoding="bgr8")
|
|
else:
|
|
if not self.bbox_res:
|
|
return
|
|
msg = BoundBox()
|
|
msg.is_detection = False
|
|
#from ultralytics.engine.results
|
|
cconf = 0.0 # threshold
|
|
bb = None
|
|
for c in self.bbox_res.boxes:
|
|
idx = int(c.cls)
|
|
if self.bbox_res.names[idx] == self.objName:
|
|
conf = float(c.conf)
|
|
if cconf < conf:
|
|
cconf = conf
|
|
bb = c
|
|
if bb:
|
|
msg.is_detection = True
|
|
msg.name = self.objName
|
|
msg.x = float(bb.xywhn[0,0])
|
|
msg.y = float(bb.xywhn[0,1])
|
|
msg.w = float(bb.xywhn[0,2])
|
|
msg.h = float(bb.xywhn[0,3])
|
|
msg.conf = float(bb.conf)
|
|
# Publish the message.
|
|
self._pub.publish(msg)
|
|
|
|
def listener_callback(self, data):
|
|
"""
|
|
Image Callback function.
|
|
"""
|
|
if self.model:
|
|
self._image_cnt += 1
|
|
self.get_logger().info(f"detection: begin {self._image_cnt}")
|
|
|
|
# Convert ROS Image message to OpenCV image
|
|
current_frame = self.br.imgmsg_to_cv2(data)
|
|
# run inference
|
|
results = self.model(current_frame)
|
|
|
|
if self._is_image_mode:
|
|
for r in results:
|
|
self.image_det = r.plot() # plot a BGR numpy array of predictions
|
|
else:
|
|
for r in results:
|
|
self.bbox_res = r
|
|
|
|
self.get_logger().info(f"detection: end {self._image_cnt}")
|
|
|
|
def main():
|
|
rclpy.init()
|
|
|
|
executor = rclpy.executors.SingleThreadedExecutor()
|
|
lc_node = Detection("lc_detection")
|
|
executor.add_node(lc_node)
|
|
try:
|
|
executor.spin()
|
|
except (KeyboardInterrupt, rclpy.executors.ExternalShutdownException):
|
|
lc_node.destroy_node()
|
|
|
|
if __name__ == '__main__':
|
|
main() |