add object detection (yolov4)

This commit is contained in:
shalenikol 2023-12-07 11:04:45 +03:00
parent 2cd29d6d0d
commit eac306c479
3 changed files with 73 additions and 9 deletions

View file

@ -3,7 +3,7 @@
<BehaviorTree ID="PoseEstimation">
<Sequence>
<Action ID="PoseEstimation"
ObjectName="!/home/$USERNAME/robossembler_ws/src/robossembler-ros2/rbs_perception/config/str_param.json"
ObjectName="!/home/shalenikol/robossembler_ws/src/robossembler-ros2/rbs_perception/config/str_param.json"
ReqKind = "calibrate"
server_name="/pose_estimation/change_state"
server_timeout="1000"/>

View file

@ -1,4 +1,5 @@
{
"mesh_path":"/home/$USERNAME/robossembler_ws/src/robossembler-ros2/rbs_perception/config/fork.ply",
"gtpose":[1.3,0.0,0.0,0.0,0.0,0.0]
"mesh_path":"/home/shalenikol/robossembler_ws/src/robossembler-ros2/rbs_perception/config/fork.ply",
"gtpose":[1.3,0.0,0.0,0.0,0.0,0.0],
"darknet_path":"/home/shalenikol/test_detection"
}

View file

@ -77,6 +77,7 @@ class PoseEstimator(Node):
self.tf2_send_pose = 0
self.mesh_scale = 1.0
self.megapose_model = None
self.darknet_path = ""
self.nodeName = node_name
self.topicImage = "/outer_rgb_camera/image"
@ -214,7 +215,9 @@ class PoseEstimator(Node):
return TransitionCallbackReturn.FAILURE
mesh_path = y["mesh_path"]
if "gtpose" in y:
gtpose = y["gtpose"]
gtpose = y["gtpose"]
if "darknet_path" in y:
self.darknet_path = y["darknet_path"]
else:
mesh_path = str_param
@ -324,12 +327,17 @@ class PoseEstimator(Node):
self._res = [data.height, data.width]
k_ = data.k
self._K = [
[k_[0], k_[1], k_[2]],
[k_[3], k_[4], k_[5]],
[k_[6], k_[7], k_[8]]
]
"""self._K = [
[k_[0]*2.0, k_[1], data.width / 2.0], # k_[2]], #
[k_[3], k_[4]*2.0, data.height / 2.0], # k_[5]], #
[k_[6], k_[7], k_[8]] #self.mesh_scale]
]
]"""
tPath = self.objPath / "inputs"
"""tPath = self.objPath / "inputs"
#{"label": "fork", "bbox_modal": [329, 189, 430, 270]}
output_fn = tPath / "object_data.json"
output_json_dict = {
@ -338,7 +346,7 @@ class PoseEstimator(Node):
}
data = []
data.append(output_json_dict)
output_fn.write_text(json.dumps(data))
output_fn.write_text(json.dumps(data))"""
#{"K": [[25.0, 0.0, 8.65], [0.0, 25.0, 6.5], [0.0, 0.0, 1.0]], "resolution": [480, 640]}
output_fn = self.objPath / "camera_data.json"
@ -372,6 +380,44 @@ class PoseEstimator(Node):
else:
data = "No result file: '" + str(f) + "'"
return data
def rel2bbox(self, rel_coord):
bb_w = rel_coord["width"]
bb_h = rel_coord["height"]
x = int((rel_coord["center_x"] - bb_w/2.) * self._res[1])
y = int((rel_coord["center_y"] - bb_h/2.) * self._res[0])
w = int(bb_w * self._res[1])
h = int(bb_h * self._res[0])
return [x,y,w,h]
def yolo2megapose(self, res_json: str, path_to: Path) -> bool:
str_param = Path(res_json).read_text()
y = json.loads(str_param)[0]
conf = 0.75 # threshold of detection
found_coord = None
for detections in y["objects"]:
if detections["name"] == self.objName:
c_conf = detections["confidence"]
if c_conf > conf:
conf = c_conf
found_coord = detections["relative_coordinates"]
if found_coord:
bbox = self.rel2bbox(found_coord)
else:
bbox = [2, 2, self._res[1]-4, self._res[0]-4]
#tPath = path_to / "inputs"
#{"label": "fork", "bbox_modal": [329, 189, 430, 270]}
output_fn = path_to / "inputs/object_data.json"
output_json_dict = {
"label": self.objName,
"bbox_modal": bbox #[288,170,392,253]
}
data = []
data.append(output_json_dict)
output_fn.write_text(json.dumps(data))
return bool(found_coord)
def listener_callback(self, data):
"""
@ -385,10 +431,27 @@ class PoseEstimator(Node):
current_frame = self.br.imgmsg_to_cv2(data)
# Save image for Megapose
cv2.imwrite(str(self.objPath / "image_rgb.png"), current_frame)
frame_im = str(self.objPath / "image_rgb.png")
cv2.imwrite(frame_im, current_frame)
self._image_cnt += 1
if self.megapose_model:
detected = False
darknet_bin = os.path.join(self.darknet_path, "darknet")
if os.path.isfile(darknet_bin):
# object detection (YoloV4 - darknet)
self.get_logger().info(f"darknet: begin {self._image_cnt}")
result_json = str(self.objPath / "res.json")
subprocess.run([darknet_bin, "detector", "test",
os.path.join(self.darknet_path, "yolov4_objs2.data"),
os.path.join(self.darknet_path, "yolov4_objs2.cfg"),
os.path.join(self.darknet_path, "yolov4.weights"),
"-dont_show", "-ext_output",
"-out", result_json, frame_im]
)
detected = self.yolo2megapose(result_json, self.objPath)
self.get_logger().info(f"darknet: end {self._image_cnt}")
if detected and self.megapose_model:
# 6D pose estimation
self.get_logger().info(f"megapose: begin {self._image_cnt} {self.objPath}")
#run_inference(self.objPath,"megapose-1.0-RGB-multi-hypothesis")