servo/controller/fw/embed/src/main.cpp

191 lines
5.3 KiB
C++
Raw Normal View History

// clang-format off
#include <Arduino.h>
#include <SimpleFOC.h>
#include <STM32_CAN.h>
#include <AS5045.h>
#include <DRV8313.h>
#include <cstring>
#include <iterator>
#include "common/base_classes/FOCMotor.h"
#include "hal_conf_extra.h"
#include "wiring_analog.h"
#include "wiring_constants.h"
// clang-format on
STM32_CAN Can(CAN2, DEF);
static CAN_message_t CAN_TX_msg;
static CAN_message_t CAN_inMsg;
SPIClass spi;
MagneticSensorAS5045 encoder(AS5045_CS, AS5045_MOSI, AS5045_MISO, AS5045_SCLK);
BLDCMotor motor(POLE_PAIRS);
DRV8313Driver driver(TIM1_CH1, TIM1_CH2, TIM1_CH3, EN_W_GATE_DRIVER,
EN_U_GATE_DRIVER, EN_V_GATE_DRIVER, SLEEP_DRIVER,
RESET_DRIVER, FAULT_DRIVER);
LowsideCurrentSense current_sense(0.01, 10.0, CURRENT_SENSOR_1,
CURRENT_SENSOR_2, CURRENT_SENSOR_3);
Commander command(Serial);
struct MotorControlInputs {
float target_angle = 0.0;
float target_velocity = 0.0;
bool motor_enabled = false;
};
MotorControlInputs motor_control_inputs;
void doMotor(char *cmd) {
command.motor(&motor, cmd);
digitalWrite(PC10, !digitalRead(PC10));
delayMicroseconds(2);
}
void setup_foc(MagneticSensorAS5045 *encoder, BLDCMotor *motor,
DRV8313Driver *driver, LowsideCurrentSense *current_sense,
Commander *commander, CommandCallback callback) {
encoder->init(&spi);
2025-02-12 21:57:27 +08:00
driver->pwm_frequency = 20000;
2025-02-12 21:57:27 +08:00
driver->voltage_power_supply = 24;
driver->voltage_limit = 24;
2025-02-17 18:53:37 +03:00
driver->init();
2025-02-12 21:57:27 +08:00
current_sense->linkDriver(driver);
current_sense->init();
2025-02-12 21:57:27 +08:00
motor->linkSensor(encoder);
motor->linkDriver(driver);
motor->linkCurrentSense(current_sense);
motor->useMonitoring(Serial);
2025-02-17 18:53:37 +03:00
motor->monitor_downsample = 5000; // default 0
motor->controller = MotionControlType::angle;
motor->torque_controller = TorqueControlType::voltage;
2025-02-12 21:57:27 +08:00
motor->foc_modulation = FOCModulationType::SpaceVectorPWM;
2025-02-17 18:53:37 +03:00
// PID start
2025-02-12 21:57:27 +08:00
motor->PID_velocity.P = 0.75;
motor->PID_velocity.I = 20;
2025-02-17 18:53:37 +03:00
motor->LPF_velocity.Tf = 0.005;
motor->P_angle.P = 0.5;
motor->LPF_angle.Tf = 0.001;
// PID end
2025-02-12 21:57:27 +08:00
2025-02-17 18:53:37 +03:00
motor->velocity_limit = 40; // Ограничение по скорости вращения rad/s (382 rpm)
2025-02-12 21:57:27 +08:00
motor->voltage_limit = 24;
motor->current_limit = 0.5;
2025-02-17 18:53:37 +03:00
motor->sensor_direction = Direction::CCW;
motor->init();
motor->initFOC();
}
void send_velocity() {
float current_velocity = motor.shaftVelocity();
CAN_TX_msg.id = 1;
CAN_TX_msg.buf[0] = 'V';
CAN_TX_msg.len = 5;
memcpy(&CAN_TX_msg.buf[1], &current_velocity, sizeof(current_velocity));
Can.write(CAN_TX_msg);
}
void send_angle() {
float current_angle = motor.shaftAngle();
CAN_TX_msg.id = 1;
CAN_TX_msg.buf[0] = 'A';
CAN_TX_msg.len = 5;
memcpy(&CAN_TX_msg.buf[1], &current_angle, sizeof(current_angle));
Can.write(CAN_TX_msg);
}
void send_motor_enabled() {
CAN_TX_msg.id = 1;
CAN_TX_msg.buf[0] = 'E';
memcpy(&CAN_TX_msg.buf[1], &motor_control_inputs.motor_enabled,
sizeof(motor_control_inputs.motor_enabled));
Can.write(CAN_TX_msg);
}
void send_data() {
send_velocity();
send_angle();
send_motor_enabled();
// read_temperature();
digitalWrite(PC11, !digitalRead(PC11));
}
void read_can_step() {
char flag = CAN_inMsg.buf[0];
if (flag == 'V') {
2025-02-12 21:57:27 +08:00
motor.enable();
memcpy(&motor_control_inputs.target_velocity, &CAN_inMsg.buf[1],
sizeof(motor_control_inputs.target_velocity));
} else if (flag == 'A') {
2025-02-12 21:57:27 +08:00
motor.enable();
memcpy(&motor_control_inputs.target_angle, &CAN_inMsg.buf[1],
sizeof(motor_control_inputs.target_angle));
} else if (flag == 'E') {
bool enable_flag = CAN_inMsg.buf[1];
if (enable_flag == 1) {
memcpy(&motor_control_inputs.motor_enabled, &CAN_inMsg.buf[1],
sizeof(motor_control_inputs.motor_enabled));
motor.enable();
} else if (enable_flag == 0) {
memcpy(&motor_control_inputs.motor_enabled, &CAN_inMsg.buf[1],
sizeof(motor_control_inputs.motor_enabled));
motor.disable();
}
}
digitalWrite(PC10, !digitalRead(PC10));
}
void foc_step(BLDCMotor *motor, Commander *commander) {
if (motor_control_inputs.target_velocity != 0 ||
motor->controller == MotionControlType::velocity) {
if (motor->controller != MotionControlType::velocity) {
motor->controller = MotionControlType::velocity;
}
motor->target = motor_control_inputs.target_velocity;
2025-02-12 21:57:27 +08:00
} else {
if (motor->controller != MotionControlType::angle) {
motor->controller = MotionControlType::angle;
}
motor->target = motor_control_inputs.target_angle;
}
motor->loopFOC();
motor->move();
motor->monitor();
commander->run();
}
void setup() {
Serial.setRx(HARDWARE_SERIAL_RX_PIN);
Serial.setTx(HARDWARE_SERIAL_TX_PIN);
2025-02-12 21:57:27 +08:00
Serial.begin(115200);
// setup led pin
pinMode(PC11, OUTPUT);
pinMode(PC10, OUTPUT);
// Setup thermal sensor pin
// pinMode(TH1, INPUT_ANALOG);
Can.begin();
Can.setBaudRate(1000000);
TIM_TypeDef *Instance = TIM2;
HardwareTimer *SendTimer = new HardwareTimer(Instance);
2025-02-17 18:53:37 +03:00
SendTimer->setOverflow(100, HERTZ_FORMAT); // 50 Hz
SendTimer->attachInterrupt(send_data);
SendTimer->resume();
setup_foc(&encoder, &motor, &driver, &current_sense, &command, doMotor);
}
void loop() {
foc_step(&motor, &command);
while (Can.read(CAN_inMsg)) {
read_can_step();
}
}